ln的运算法则 (5),ln的运算法则加减
本作品内容为ln的运算法则 (5),格式为 docx ,大小 13307 KB ,页数为 3页
('ln的运算法则自然对数是以常数e为底数的对数,记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义,一般表示方法为lnx。数学中也常见以logx表示自然对数。运算法则:lnab=lna+lnblna/b=lna-lnblna^n=nlna1、ln(MN)=lnM+lnN2、ln(M/N)=lnM-lnN3、ln(M^n)=nlnM4、ln1=05、lne=1注意:M>0,N>0自然对数是以常数e为底数的对数,记作lnN(N>0)。换底公式设b=a^m,a=c^n,则b=(c^n)^m=c^(mn)①对①取以a为底的对数,有:log(a)(b)=m②对①取以c为底的对数,有:log(c)(b)=mn③③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)注:log(a)(b)表示以a为底b的对数。换底公式拓展:以e为底数和以a为底数的公式代换:logae=1/(lna)有关概念自然对数的底数e是由一个重要极限给出的.我们定义:当x趋于无限时,lim(1+1/x)^x=e.e是一个无限不循环小数,其值约等于2.718281828…,它是一个超越数.对数函数当自然对数lnN中真数为连续自变量时,称为对数函数,记作y=Inx(x为自变量,y为因变量).e的级数展开式易证明:函数f(x)=e^x展开为x的幂级数(Maclaurin级数)是f(x)=e^x=1+x+(x^2)/2!+(x^3)/3!+…+(x^n)/n!+…;特别地,当x=1时就得到了e的展开式e=1+1+1/2!+1/3!+…+1/n!+….自然律”是e及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:(1+1/x)^x当X趋近无穷时的极限。人们在研究一些实际问题,如物体的冷却细胞的繁殖、放射性元素的衰变时,都要研究(1+1/x)^x,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。',)
提供ln的运算法则 (5),ln的运算法则加减会员下载,编号:1700742541,格式为 docx,文件大小为3页,请使用软件:wps,office word 进行编辑,PPT模板中文字,图片,动画效果均可修改,PPT模板下载后图片无水印,更多精品PPT素材下载尽在某某PPT网。所有作品均是用户自行上传分享并拥有版权或使用权,仅供网友学习交流,未经上传用户书面授权,请勿作他用。若您的权利被侵害,请联系963098962@qq.com进行删除处理。