双曲线的参数方程,双曲线的参数方程公式
本作品内容为双曲线的参数方程,格式为 docx ,大小 262775 KB ,页数为 5页
('1双曲线的参数方程双曲线的参数方程:双曲线的参数方程是(θ是参数,0≤θ<2π,)。双曲线的参数方程是双曲线上任意点M的坐标可设为双曲线的普通方程和参数方程的关系:椭圆的参数方程椭圆的参数方程:椭圆的参数方程是,θ∈[0,2π)。椭圆的参数方程的理解:2如图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN⊥Ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时,点M的横坐标与点A的横坐标相同,点M的纵坐标与点B的纵坐标相同.而A、B的坐标可以通过引进参数建立联系.设,由已知得,即为点M的轨迹参数方程,消去参数得,即为点M的轨迹普通方程。(1)参数方程,是椭圆的参数方程;(2)在椭圆的参数方程中,常数a、b分别是椭圆的长半轴长和短半轴长.a>b,称为离心角,规定参数的取值范围是[0,2π);(3)焦点在y轴的参数方程为曲线的参数方程曲线的参数方程的定义:一般地,在平面直角坐标系中,如果曲线C上任意一点的坐标x、y都是某个变数t的函数,并且对于t的每一个允许值,由方程组①所确定的点P(x,y)都在这条曲线C上,那么方程组①就叫做这条曲线的参数方程。变数t叫做参变量或参变数,简称参数。3曲线的参数方程的理解与认识:(1)参数方程的形式:横、纵坐标x、y都是变量t的函数,给出一个t能唯一的求出对应的x、y的值,因而得出唯一的对应点;但横、纵坐标x、y之间的关系并不一定是函数关系。(2)参数的取值范围:在表述曲线的参数方程时,必须指明参数的取值范围;取值范围的不同,所表示的曲线也可能会有所不同。(3)参数方程与普通方程的统一性:普通方程是相对参数方程而言的,普通方程反映了坐标变量x与y之间的直接联系,而参数方程是通过变数反映坐标变量x与y之间的间接联系;普通方程和参数方程是同一曲线的两种不同表达形式;参数方程可以与普通方程进行互化。圆的参数方程圆的参数方程:(θ∈[0,2π)),(a,b)为圆心坐标,r为圆的半径,θ为参数(x,y)为经过点的坐标。圆心为原点,半径为r的圆的参数方程:如图,如果点P的坐标为(x,y),圆半径为r,根据三角函数定义,点P的横坐标x、纵坐标y都是θ的函数,即4参数方程的概念参数方程的概念:一般地,在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.参数方程和普通方程的互化:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。(1)参数方程化为普通方程的过程就是消参过程,常见方法有三种:①代入法:利用解方程的技巧求出参数t,然后代入消去参数;②三角法:利用三角恒等式消去参数;③整体消元法:根据参数方程本身的结构特征,从整体上消去.(2)普通方程化为参数方程需要引入参数.如:①直线的普通方程是2x-y+2=0,可以化为参数方程5②在普通方程xy=1中,令可以化为参数方程关于参数的几点说明:(1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.(2)同一曲线选取参数不同,曲线参数方程形式也不同.(3)在实际问题中要确定参数的取值范围.参数方程的几种常用方法:方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等.方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程,要熟记曲线参数方程的形式及参数的意义.方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题.方法4利用圆的渐开线的参数方程求点:利用参数方程求解点时只需将参数代入方程就可求得。方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式,可知只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一确定,因此只需把点代人参数方程求出r值再代人参数方程的表达式.',)
提供双曲线的参数方程,双曲线的参数方程公式会员下载,编号:1700755565,格式为 docx,文件大小为5页,请使用软件:wps,office word 进行编辑,PPT模板中文字,图片,动画效果均可修改,PPT模板下载后图片无水印,更多精品PPT素材下载尽在某某PPT网。所有作品均是用户自行上传分享并拥有版权或使用权,仅供网友学习交流,未经上传用户书面授权,请勿作他用。若您的权利被侵害,请联系963098962@qq.com进行删除处理。