课题学习-最短路径问题-【高效课堂】2022-2023学年八年级数学上学期同步精品课件(人教版)
第13.4课题学习—最短路径问题人教版数学八年级上册学习目标1.利用轴对称解决简单的最短路径问题.2.能够利用轴对称、平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.情境引入如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?两点之间,线段最短.FEDCBA①②③选择路线②互动新授问题1如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?BAlC考点一将军饮马问题如图,A,B在直线L的两侧,在L上求一点C,使得CA+CB最小。互动新授∙∙ABl解析:连接A,B两点,交直线l于点C,则点C即为所求的位置,可以使得AC+BC的值最小.依据:两点之间,线段最短..C那A、B两点在直线l的同一侧呢?如何确定点C呢?∙∙ABl互动新授你能利用两点分别在直线两侧的解题思路,来解决两点在直线同一侧的问题吗?分析:如果我们能够把点B转移到直线l的另外一侧B′,同时使得对直线上任意一点C,满足BC=B′C,就可以将问题转化为“两点分别在直线两侧的情况”.那么在直线l上使得满足BC=B′C的点应该怎么找呢?如图,作出点B关于直线l的对称点B′,利用轴对称的性质可知:对于直线l上的任意一点C均满足BC=B′C.此时,问题转化为:当点C在直线l的什么位置时,AB+B′C的值最小?∙B′容易得出:连接AB′交直线l于点C,则点C即为所求.∙∙ABlC∙互动新授你能证明这个结论吗?证明:在直线l上任意取一点C′(不与点C重合),连接AC′,BC′,B′C′.由轴对称的性质可得:BC=B′C,BC′=B′C′,则AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′
提供课题学习-最短路径问题-【高效课堂】2022-2023学年八年级数学上学期同步精品课件(人教版)会员下载,编号:1701028799,格式为 xlsx,文件大小为27页,请使用软件:wps,office Excel 进行编辑,PPT模板中文字,图片,动画效果均可修改,PPT模板下载后图片无水印,更多精品PPT素材下载尽在某某PPT网。所有作品均是用户自行上传分享并拥有版权或使用权,仅供网友学习交流,未经上传用户书面授权,请勿作他用。若您的权利被侵害,请联系963098962@qq.com进行删除处理。