圆锥曲线公式大全 (2),圆锥曲线二级结论大全
本作品内容为圆锥曲线公式大全 (2),格式为 doc ,大小 818176 KB ,页数为 9页
('圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:2、直线方程:⑴点斜式:直线经过点,且斜率为:⑵斜截式:已知直线的斜率为,且与轴的交点为:⑶两点式:已知两点其中:⑷截距式:已知直线与轴的交点为A,与轴的交点为B:⑸一般式:(A、B不同时为0,斜率,轴截距为)(6)k不存在3、直线之间的关系:⑴平行:⑵垂直:⑶平行系方程:与直线平行的方程设为:⑷垂直系方程:与直线垂直的方程设为:⑸定点(交点)系方程:过两条直线的交点的方程设为:反之直线中,取任何一切实数R,则直线一定过定点,即两条直线的交点4、距离公式:(1)两点间距离公式:两点:(2)点到直线距离公式:点到直线的距离为(3)两平行线间的距离公式::与:平行,则二、圆与方程1、圆的方程:⑴标准方程:其中圆心为,半径为.⑵一般方程:()其中圆心为,半径为.2、直线与圆的位置关系\uf081点和圆的位置关系有三种:\uf082直线与圆的位置关系有三种:;;.\uf083切线方程:(1)当点在圆上圆(2)当点在圆外,则设直线方程,并利用d=r求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k不存在】④弦长公式:3、两圆位置关系:⑴外离:有4条公切线⑵外切:有3条公切线⑶相交:有2条公切线⑷内切:有1条公切线⑸内含:有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置焦点在轴上焦点在轴上图形标准方程第一定义到两定点的距离之和等于常数2,即()第二定义与一定点的距离和到一定直线的距离之比为常数,即范围且且顶点、、、、轴长长轴的长短轴的长对称性关于轴、轴对称,关于原点中心对称焦点、、焦距离心率准线方程焦半径左焦半径:右焦半径:下焦半径:上焦半径:焦点三角形面积通径过焦点且垂直于长轴的弦叫通径:2.双曲线焦点的位置焦点在轴上焦点在轴上图形标准方程第一定义到两定点的距离之差的绝对值等于常数,即()第二定义与一定点的距离和到一定直线的距离之比为常数,即范围或,或,顶点、、轴长实轴的长虚轴的长对称性关于轴、轴对称,关于原点中心对称焦点、、焦距离心率准线方程渐近线方程焦半径在右支在左支上支下支焦点三角形面积通径过焦点且垂直于长轴的弦叫通径:【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:由渐进线求双曲线:2.等轴双曲线实轴和虚轴等长的双曲线其离心率e=渐近线方程设为2、求弦长的方法:①求交点,利用两点间距离公式求弦长;②弦长公式3.抛物线图形标准方程开口方向向右向左向上向下定义与一定点和一条定直线的距离相等的点的轨迹叫做抛物线(定点不在定直线上)顶点离心率对称轴轴轴范围焦点准线方程焦半径通径过抛物线的焦点且垂直于对称轴的弦称为通径:焦点弦长公式参数几何意义参数表示焦点到准线的距离,越大,开口越阔五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y=kx+b与椭圆=1(a>b>0)的位置关系:直线与椭圆相交⇔有2解,即Δ>0.直线与椭圆相切⇔有1组实数解,即Δ=0,直线与椭圆相离⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系)则有(2)③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;(椭圆)(双曲线)3、关于抛物线焦点弦的几个结论(了解)设为过抛物线焦点的弦,,直线的倾斜角为,则⑴⑵⑶以为直径的圆与准线相切;⑷焦点对在准线上射影的张角为⑸',)
提供圆锥曲线公式大全 (2),圆锥曲线二级结论大全会员下载,编号:1700745788,格式为 docx,文件大小为9页,请使用软件:wps,office word 进行编辑,PPT模板中文字,图片,动画效果均可修改,PPT模板下载后图片无水印,更多精品PPT素材下载尽在某某PPT网。所有作品均是用户自行上传分享并拥有版权或使用权,仅供网友学习交流,未经上传用户书面授权,请勿作他用。若您的权利被侵害,请联系963098962@qq.com进行删除处理。