Login
升级VIP 登录 注册 安全退出
当前位置: 首页 > PPT模板 > 其他PPT > 第8课时-二元一次方程组,二元一次方程组练习题

第8课时-二元一次方程组,二元一次方程组练习题

收藏

第8课时-二元一次方程组

第8课时-二元一次方程组

第8课时-二元一次方程组

第8课时-二元一次方程组

第8课时-二元一次方程组

首页课件目录末页第一部分数与代数第三章方程与方程组考点管理中考再现课时作业归类探究第8课时二元一次方程组首页课件目录末页考点管理1.二元一次方程的有关概念定义:含有未知数,并且含有未知数的项的次数都是的整式方程.二元一次方程的解:使二元一次方程两边的值的两个未知数的值,叫做二元一次方程的解.两个1相等首页课件目录末页2.二元一次方程组的有关概念定义:把两个含有相同未知数的二元一次方程合在一起就组成一个二元一次方程组.二元一次方程组的解:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解.公共解首页课件目录末页3.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用表示出来,再另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.含另一个未知数的式子代入首页课件目录末页易错点:(1)在用代入消元法求解时,不能正确地用其中一个未知数去表示另一个未知数;(2)在求一个未知数时,还原代入了原方程.加减消元法:当两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.其他方法:在解二元一次方程组时,也可以用整体代入、换元等方法来解决.相加首页课件目录末页4.运用二元一次方程组解决实际问题步骤:(1)设两个未知数;(2)根据已知条件列出与未知数的个数相等的两个独立方程组成的方程组;(3)解方程组;(4)检验求得的未知数的值是否符合实际意义.首页课件目录末页5.三元一次方程组的概念和解法定义:含有未知数,每个方程中含未知数的项的次数都是,并且一共有方程,像这样的方程组叫做三元一次方程组.思路:用代入法、加减法消去一个未知数,化成二元一次方程组,再解这个二元一次方程组.三元一次方程组――→消元二元一次方程组――→消元一元一次方程.三个三个1首页课件目录末页中考再现1.[2019·长沙]《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()首页课件目录末页A.y=x+4.5,0.5y=x-1B.y=x+4.5,y=2x-1C.y=x-4.5,0.5y=x+1D.y=x-4.5,y=2x-1【解析】根据题意找出相等关系式,可得方程组y=x+4.5,0.5y=x-1.故选A.【答案】A首页课件目录末页2.[2019·邵阳]某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后超过部分每千米收费y元,则下列方程组正确的是()A.x+7y=16,x+13y=28B.x+7-2y=16,x+13y=28C.x+7y=16,x+13-2y=28D.x+7-2y=16,x+13-2y=28D首页课件目录末页【解析】根据题意,可得方程组为x+7-2y=16,x+13-2y=28.故选D.首页课件目录末页3.[2019·常德]二元一次方程组x+y=6,2x+y=7的解为.x=1,y=5【解析】x+y=6,①2x+y=7.②②-①,得x=1,将x=1代入①,得y=5.∴方程组的解为x=1,y=5.首页课件目录末页4.[2019·常州]若x=1,y=2是关于x,y的二元一次方程ax+y=3的解,则a=.1【解析】将x=1,y=2代入方程ax+y=3,得a+2=3,解得a=1.首页课件目录末页5.[2019·怀化]解二元一次方程组:x+3y=7,x-3y=1.解:x+3y=7,①x-3y=1.②①+②,得2x=8,解得x=4.首页课件目录末页把x=4代入①,得y=1.∴方程组的解为x=4,y=1.首页课件目录末页归类探究类型之一二元一次方程(组)的有关概念[2019·菏泽]已知x=3,y=-2是方程组ax+by=2,bx+ay=-3的解,则a+b的值是()A.-1B.1C.-5D.5A首页课件目录末页【解析】将x=3,y=-2代入ax+by=2,bx+ay=-3,可得3a-2b=2,3b-2a=-3.两式相加,得a+b=-1.故选A.【点悟】二元一次方程组的解适合方程组中的每一个方程,只要把解代入原方程组,则可利用解方程组的方法求出待定字母的值.首页课件目录末页1.甲、乙两人共同解方程组ax+5y=15,①4x-by=-2.②由于甲看错了方程①中的a,得到方程组的解为x=-3,y=-1;乙看错了方程②中的b,得到方程组的解为x=5,y=4.(1)求出a,b的值;(2)求2a-3b+5的立方根.首页课件目录末页解:(1)将x=-3,y=-1代入②,得-12+b=-2.∴b=10.将x=5,y=4代入①,得5a+20=15.∴a=-1.(2)∵a=-1,b=10,∴2a-3b+5=-2-30+5=-27.-27的立方根为-3.首页课件目录末页类型之二二元一次方程组的解法用两种方法解方程组2x-5y=-3,①-4x+y=-3.②解:(方法一)加减法:①×2+②,得-9y=-9,解得y=1.将y=1代入①,得2x-5=-3,解得x=1.故方程组的解为x=1,y=1.首页课件目录末页(方法二)代入法:由②得y=4x-3.将y=4x-3代入①,得2x-5(4x-3)=-3,解得x=1.将x=1代入y=4x-3,得y=4-3=1.故方程组的解为x=1,y=1.首页课件目录末页2.[2019·金华]解方程组:3x-4x-2y=5,x-2y=1.解:3x-4x-2y=5,①x-2y=1.②由①,得-x+8y=5,③②+③,得6y=6,解得y=1.把y=1代入②,得x-2×1=1.解得x=3.∴原方程组的解为x=3,y=1.首页课件目录末页【点悟】当两个方程中的某个未知数的系数相等(或互为相反数),或者相应系数之间存在倍数关系时,一般采用加减消元法求解,其步骤是运用等式性质,把某一个未知数的系数化成相同的数(或相反数),通过相减(或相加)消去一个未知数,达到消元求解的目的.首页课件目录末页类型之三二元一次方程组的应用[2019·陇南]小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元.首页课件目录末页解:设中性笔和笔记本的单价分别是x元、y元.根据题意,可得12y+20x=112,12x+20y=144.解得x=2,y=6.答:中性笔和笔记本的单价分别是2元、6元.首页课件目录末页3.[2018·长沙]随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需要660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?首页课件目录末页解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元.根据题意,得6x+3y=660,50×0.8x+40×0.75y=5200.解得x=70,y=80.答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1-80%)+100×80×(1-75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.首页课件目录末页【点悟】(1)解决此类问题的关键是读懂题意,从中找出已知的或隐含的等量关系列出方程组并求解;(2)若可以用一个未知量表示另一个未知量,此种问题可转化为一元一次方程来解.首页课件目录末页课时作业(60分)一、选择题(每题7分,共28分)1.[2019·天津]方程组3x+2y=7,6x-2y=11的解是()A.x=-1,y=5B.x=1,y=2C.x=3,y=-1D.x=2,y=12D首页课件目录末页【解析】观察方程组可以发现,两个方程中y的系数互为相反数,∴可以选择加减消元法,将两个方程相加,消去未知数y,可得x=2,从而求出y的值.故选D.首页课件目录末页2.[2019·贺州]已知方程组2x+y=3,x-2y=5,则2x+6y的值是()A.-2B.2C.-4D.4C【解析】两式相减,得x+3y=-2,∴2(x+3y)=-4,即2x+6y=-4.故选C.首页课件目录末页3.[2019·巴中]已知关于x,y的二元一次方程组ax-y=4,3x+by=4的解是x=2,y=-2,则a+b的值是()A.1B.2C.-1D.0B首页课件目录末页【解析】将x=2,y=-2代入方程组,得2a+2=4,6-2b=4.解得a=1,b=1.∴a+b=2.故选B.首页课件目录末页4.[2019·重庆A卷]《九章算术》中有这样一个题:今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;而若甲把其23的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()首页课件目录末页A.x+12y=50,23x+y=50B.x+12y=50,x+23y=50C.12x+y=50,23x+y=50D.12x+y=50,x+23y=50【答案】A首页课件目录末页【解析】根据“甲的钱+乙的钱的一半=50;甲的钱的23+乙的钱=50”可得方程组x+12y=50,23x+y=50.故选A.首页课件目录末页二、填空题(每题7分,共21分)5.[2019·苏州]若a+2b=8,3a+4b=18,则a+b的值为.【解析】∵(a+2b)-(3a+4b)=-2(a+b)=8-18=-10,∴a+b=5.5首页课件目录末页6.[2019·自贡]某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.x=y+4,4x+5y=466【解析】根据“篮球的单价比足球的单价多4元”可列方程x=y+4;根据“买了4个篮球和5个足球,一共花费了466元”可列方程4x+5y=466.联立成方程组为x=y+4,4x+5y=466.首页课件目录末页7.[2019·泰安]《九章算术》是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子的重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.9x=11y,10y+x-8x+y=13首页课件目录末页【解析】甲袋中装有黄金9枚,乙袋中装有白银11枚,称重两袋相等,可得9x=11y,两袋互相交换1枚后,甲袋比乙袋轻了13两,可得(10y+x)-(8x+y)=13,∴方程组为9x=11y,10y+x-8x+y=13.首页课件目录末页三、解答题(共11分)8.(11分)解二元一次方程组:(1)x-3y=0,2x=y-5;(代入法)解:x-3y=0,①2x=y-5.②由①,得x=3y,③首页课件目录末页把③代入②,得2×3y=y-5,解得y=-1.把y=-1代入③,得x=-3,则方程组的解为x=-3,y=-1.首页课件目录末页(2)[2019·广州]x-y=1,x+3y=9.(加减法)解:x-y=1,①x+3y=9.②②-①,得4y=8,解得y=2,把y=2代入①,得x-2=1,解得x=3.故原方程组的解为x=3,y=2.首页课件目录末页(25分)9.(12分)[2019·淄博]“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价-成本),其每件产品的成本和售价信息如下表:AB成本(单位:万元/件)24售价(单位:万元/件)57问该公司这两种产品的销售件数分别是多少?首页课件目录末页解:设A种产品的销售件数为x件,B种产品的销售件数为y件,由题意列方程,得5x+7y=2060,3x+3y=1020.解得x=160,y=180.答:A种产品的销售件数为160件,B种产品的销售件数为180件.首页课件目录末页10.(13分)[2019·盐城]体育器材室有A,B两种型号的实心球,1只A型球与1只B型球的质量共7kg,3只A型球与1只B型球的质量共13kg.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17kg,则A型球、B型球各有多少只?首页课件目录末页解:(1)设每只A型球的质量为xkg,每只B型球的质量为ykg,由题意得x+y=7,3x+y=13.解得x=3,y=4.答:每只A型球的质量为3kg,每只B型球的质量为4kg.首页课件目录末页(2)设A型球有a只,B型球有b只,则3a+4b=17,∴a=17-4b3.∵a,b分别是正整数,∴a=3,b=2.答:A型球有3只、B型球有2只.首页课件目录末页(15分)11.(15分)[2019·岳阳]岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地的面积比改造土地的面积多600亩.首页课件目录末页(1)求复耕土地和改造土地的面积各为多少亩;(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场的总面积不超过花卉园总面积的13,求休闲小广场的总面积最多为多少亩.首页课件目录末页解:(1)设复耕土地的面积为x亩,改造土地的面积为y亩,根据题意,得x+y=1200,x-y=600.解得x=900,y=300.答:复耕土地的面积为900亩,改造土地的面积为300亩.首页课件目录末页(2)设休闲小广场的面积为m亩,则花卉园的面积为(300-m)亩,根据题意,得m≤13(300-m),解得m≤75.答:休闲小广场的总面积最多为75亩.


  • 编号:1701027944
  • 分类:其他PPT
  • 软件: wps,office Excel
  • 大小:53页
  • 格式:xlsx
  • 风格:其他
  • PPT页数:4569088 KB
  • 标签:

广告位推荐

相关其他PPT更多>