华罗庚优选法,华罗庚优选法的原理
本作品内容为华罗庚优选法,格式为 doc ,大小 16384 KB ,页数为 3页
('优选的方法的问题处处有,常常见.但问题简单,易于解决,故不为人们所注意.自从工艺过程日益繁复,质量要求精益求精,优选的问题也就提到日程上来了.简单的例子,如:一枝粉笔多长最好每枝粉笔都要丢掉一段一定长的粉笔头,单就这一点来说,愈长愈好.但太长了,使用起来既不方便,而且容易折断,每断一次,必然多浪费一个粉笔头,反而不合适.因而就出现了“粉笔多长最合适”的问题,这就是一个优选问题.蒸馒头放多少碱好放多了不好吃,放少了也不好吃,放多少最好吃呢这也是一个优选问题.也许有人说:这是一个不确切的问题.何谓好吃你有你的口味,我有我的口味,好吃不好吃根本没有标准.对!但也不完全对!可否针对我们食堂定出一个标准来!假定我们食堂有一百人,放碱多少,这一百人有多少人说好吃,统计一下,不就有了指标吗我们的问题就是找出合适的用碱量,使食堂里说好吃的人最多.这只是引子,是比喻.实际上问题比此复杂,还有发酵问题等等没有考虑进去呢!同时,这样的问题老师傅早已从实践中摸清规律,解决了这一问题了,我们不过用来通俗说明什么是优选方法而已.优选方法的适用范围是:怎样选取合适的配方,合适的制作过程,使产品的质量最好在质量的标准要求下,使产量最高成本最低,生产过程最快已有的仪器怎样调试,使其性能最好也许有人说我们可以做大量试验嘛!把所有的可能性做穷尽了,还能找不到最好的方案和过程大量的试验要花去大量的时间、精力和器材,而且有时还不一定是可能的.举个简单的例子,一个一平方公里的池塘,我们要找其最深点.比方说每隔一公尺测量一次,我们必须测量1000×1000,总共一百万个点,这个问题不算复杂,只有横竖两个因素.多几个:三个、四个、五个、六个更不得了!假定一个因素要求准两位,也就是分100个等级,两个因素就需要100×100即一万次,三个就需要100×100×100即一百万次,四个就需要一亿次;就算你有能耐,一天能做三十次,一年做一万次,要一万年才能做完这些实验.优选方法的目的在于减少实验次数,找到最优方案.例如在一个因素时,只要做14次就可以代替1600次实验.上面所说的池塘问题,有130次就可以代替一百万次了(当然我们假定了池塘底都不是忽高忽低的).五优选法来回调试法是我们经常用的方法.但是怎样的来回调试最有效,1952年J.Kiefer解决了这一问题.由于和初等几何的黄金分割有关,因而称为黄金分割法.这是一个应用范围广阔的方法.我们怎样才能让普通工人掌握这个方法并用于他们的工作中我们讲授的方法是(先预备一张狭长纸条)1)请大家记好一个数字0.618.2)举例说:进行某工艺时,温度的最佳点可能在1000℃~2000℃之间.当然,我们可以隔一度做一个试验,做完一千个试点之后,我们一定可以找到最佳温度.但要做一千次试验.3)(取出纸条)假定这是有刻度的纸条,刻了1000℃到2000.℃第一个试点在总长度的0.618处做,总长度是1000,乘以0.618是618,也就是说第一点在1618℃做,做出结果记下.4)把纸条对折,在第一试点的对面,即点②(1382)℃处做第二试验.比较第一、二试点结果,在较差点(例如①)处将纸条撕下不要.5)对剩下的纸条,重复4)的处理方法,直到找出最好点.用这样的办法,普通工人一听就能懂,懂了就能用.根据上面第二部份提出的“选题三原则”,我们选择了若干常用的优选方法,用类似的浅显语言向工人讲授.对于一些不易普及但在特殊情况下可能用上的方法,我们也作了深入的研究.例如1962年提出的DFP法(Davidon-Fleteher-Powell).声称收敛速度是|x(k+1)-x|=0(|x(k)-x|),我们曾指出此法的收敛速度还应达到|x(k+n)-x|=0(|x(k)-x|2).1979年我们在西欧才得知W.Burmeister于1973年曾证明了这结果.但是我们早在1968年就给出了收敛速度达到|x(k+1)-x|=0(|x(k)-x|2)的方法.这方法比DFP法至少可以少做一半试验.统筹法又称网络计划法。它是以网络图反映、表达计划安排,据以选择最优工作方案,组织协调和控制生产(项目)的进度(时间)和费用(成本),使其达到预定目标,获得更佳经济效益的一种优化决策方法。所谓优选法选法,是华罗庚运用黄金分割法发明的一种可以尽可能减少做试验次数、尽快地找到最优方案的方法。比如要试制一种新型材料,需要加入某种原料增强其强度,这就有加入多少的问题,加多了不行,加少了也不行,只有完全合适才可以。比如我们估出每吨加入量在1克至1000克之间,这样我们就可以借用黄金分割规律来简化试验次数,而不必从1克到1000克做1000次实验,我们用一个有刻度的纸条来表示1至1000克。在纸条上找到618(10000.618)克的地点画一条竖线,做一次试验,然后把纸条对折起来,找到618的对称点382(6180.618),再做一次试验,如果382克为最好,则把618以外的纸条裁掉。然后再对折,找到382的对称点236(3820.618)做试验,这样循环往复,就可以找到最佳的数值。',)
提供华罗庚优选法,华罗庚优选法的原理会员下载,编号:1700757510,格式为 docx,文件大小为3页,请使用软件:wps,office word 进行编辑,PPT模板中文字,图片,动画效果均可修改,PPT模板下载后图片无水印,更多精品PPT素材下载尽在某某PPT网。所有作品均是用户自行上传分享并拥有版权或使用权,仅供网友学习交流,未经上传用户书面授权,请勿作他用。若您的权利被侵害,请联系963098962@qq.com进行删除处理。