2022-2023学年沪教版(上海)数学九年级第一学期--二次函数的概念-课件-(1)
教学目标和要求:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。复习旧知识,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心,提高创新思维能力。复习提问一次函数的定义是什么?【设计意图】复习这些问题是为了引入一元二次此函数做铺垫,帮助学生加深对函数定义的理解.1.一元二次方程的一般形式是什么?2。一次函数的定义是什么?(a≠0)函数一次函数反比例函数二次函数正比例函数ky=k≠0xy=kx+b(k≠0)y=kx(k≠0)一条直线双曲线例1.下列关于x的函数,是不是二次函数?是不是【概念辨析】13)1(xy1)3(2)4(xxy3)1()7(2xkkxyxxy21)3(14)5(23xxy32)8(2xxy22124)6(xxy25)2(xy不是是不是不是不是不是归纳:(化为最简式的前提下)(1)二次函数解析式中,关于x的代数式一定是整式;(2)整式中自变量的最高次数为二次.xxmy3)1()9(22是【概念辨析】例2.已知关于x的函数若它是关于x的二次函数,求m的取值范围.31)x(m1)x-(my2mm【概念辨析】例2.已知关于x的函数y=(m2-2m-3)x2+(m+1)x+m2.(1)若它是关于x的二次函数,m要满足的条件是.(2)若它是关于x的一次函数,m要满足的条件是.一次函数二次函数解析式y=ax²+bx+c(a≠0)y=kx+b(k≠0)如图,用长为20米的篱笆,一面靠墙(墙长度超过20米),围成一个矩形的花圃.设AB边的长为x米,花圃的面积为y平方米.(1)求y关于x的函数解析式及函数的定义域;xx20-2xBCDA(2)当x=6时,y的值是多少?当y=32时,x的值多少?(3)花圃的面积是否可能等于60平方米?为什么?墙长度超过20米(4)若题目的条件修改一下,那么第1.2问还一样吗?探索问题1正方体的六个面是全等的正方形,设正方形的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为?设矩形靠墙的一边AB的长xm,矩形的面积ym2.能用含x的代数式来表示y吗?教师提问:以上例子所列出的函数有什么特点,学生观察并讨论。【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,对比一次函数归纳出二次函数的定义已知函数(1)k为何值时,y是x的一次函数?(2)k为何值时,y是x的二次函数?解(1)根据题意得∴k=1时,y是x的一次函数。002kkk22()2ykkxkxk当时数2(2)k-k≠0,即k≠0且k≠1y是x的二次函如果函数y=(k-3)+kx+1是二次函数,则k的值一定是______2k-3k+2x0如果函数y=+kx+1是二次函数,则k的值一定是______2k-3k+2x0,32:m取何值时函数y=(m+2)xm2-2+(m-3)x+m是二次函数?1、下列函数中是二次函数的是()A:y=3-2x21xC:y=(x-3)2-x2D:y=x3-x2AB:y=x2-m=2
提供2022-2023学年沪教版(上海)数学九年级第一学期--二次函数的概念-课件-(1)会员下载,编号:1701028140,格式为 xlsx,文件大小为15页,请使用软件:wps,office Excel 进行编辑,PPT模板中文字,图片,动画效果均可修改,PPT模板下载后图片无水印,更多精品PPT素材下载尽在某某PPT网。所有作品均是用户自行上传分享并拥有版权或使用权,仅供网友学习交流,未经上传用户书面授权,请勿作他用。若您的权利被侵害,请联系963098962@qq.com进行删除处理。