Login
升级VIP 登录 注册 安全退出
当前位置: 首页 > PPT课件 > 数学 > 《变量间的相关关系》人教版高中数学必修三PPT课件(第2.3.1课时).pptx

《变量间的相关关系》人教版高中数学必修三PPT课件(第2.3.1课时).pptx

收藏

《变量间的相关关系》人教版高中数学必修三PPT课件(第2.3.1课时).pptx

《变量间的相关关系》人教版高中数学必修三PPT课件(第2.3.1课时).pptx

《变量间的相关关系》人教版高中数学必修三PPT课件(第2.3.1课时).pptx

《变量间的相关关系》人教版高中数学必修三PPT课件(第2.3.1课时).pptx

《变量间的相关关系》人教版高中数学必修三PPT课件(第2.3.1课时).pptx

讲解人:办公资源时间:2020.6.1MENTALHEALTHCOUNSELINGPPT2.3.1变量间的相关关系第2章统计人教版高中数学必修31了解变量间的相关关系,能利用散点图直观认识变量间的相关关系。2理解回归直线方程的意义,能够求出回归直线方程。3体会统计思想与确定性思维的差异。学习目标小明,你数学成绩不太好,物理怎么样?也不太好啊.学不好数学,物理也是学不好的?????...新知探究你认为老师的说法对吗?事实上,我们在考察数学成绩对物理成绩影响的同时,还必须考虑到其他的因素:爱好,努力程度如果单纯从数学对物理的影响来考虑,就是考虑这两者之间的相关关系我们在生活中,碰到很多相关关系的问题:物理成绩数学成绩学习兴趣花费时间其他因素新知探究1〉商品销售收入与广告支出经费之间的关系。•商品销售收入与广告支出经费之间有着密切的联系,但商品收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关。我们还可以举出现实生活中存在的许多相关关系的问题。例如:新知探究•在一定范围内,施肥量越大,粮食产量就越高。但是,施肥量并不是决定粮食产量的唯一因素,因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响。2〉粮食产量与施肥量之间的关系。•在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关。3〉人体内脂肪含量与年龄之间的关系。上面的几个例子都反映了:两个变量之间是一种不确定的关系。产生这种关系的原因是受到许多不确定的随机因素的影响。当自变量取值一定,因变量的取值带有一定随机性时,两个变量之间的关系称为相关关系。相关关系是一种不确定关系。新知探究不同点:1、函数关系是一种确定的关系;而相关关系是一种非确定关系.相关关系与函数关系的异同点:相同点:均是指两个变量的关系.3、函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2、相关关系中两个变量之间产生相关关系的原因是受许多不确定的随机因素的影响。新知探究1.下列关系中,是带有随机性相关关系的是.①正方形的边长与面积的关系;②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故发生之间的关系.②④即学即练:2.下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高D新知探究【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6根据上述数据,人体的脂肪含量与年龄之间有怎样的关系?新知探究思考1:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6新知探究051015202530354020253035404550556065年龄脂肪含量思考2:上图叫做散点图,你能描述一下散点图的含义吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.新知探究051015202530354020253035404550556065年龄脂肪含量051015202530354020253035404550556065年龄脂肪含量观察散点图的大致趋势,两个变量的散点图中点的分布的位置是从左下角到右上角的区域,我们称这种相关关系为正相关。新知探究051015202530354020253035404550556065年龄脂肪含量运鱼车的单位时间与存活比例00.511.500.20.40.6单位时间存活比例思考3:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?散点图中的点散布在从左上角到右下角的区域.新知探究运鱼车的单位时间与存活比例00.511.500.20.40.6单位时间存活比例散点图说明3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.1)如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.2)如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系。散点图:用来判断两个变量是否具有相关关系.新知探究正相关(2)吸烟有害健康负相关(3)高原含氧量与海拔高度负相关(4)学习的努力程度与学习成绩正相关练习:判断下列各题属于哪种相关关系?(1)某工厂一月份总成本与该月总产量思考:你能列举一些生活中的变量成正相关或负相关的实例吗?新知探究1、名师出高徒2、高瞻远瞩3、见多识广4、种瓜得瓜,种豆得豆新知探究如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线就叫做回归直线。这条回归直线的方程,简称为回归方程。回归直线051015202530354020253035404550556065年龄脂肪含量新知探究051015202530354020253035404550556065年龄脂肪含量整体上最接近方案:采用测量的方法:先画一条直线,测量出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测量出此时直线的斜率和截距,就得到回归方程。四、如何具体的求出这个回归方程呢?051015202530354020253035404550556065年龄脂肪含量新知探究051015202530354020253035404550556065年龄脂肪含量根据有关数学原理分析,当时,总体偏差为最小,这样就得到了回归方程,这种求回归方程的方法叫做最小二乘法.回归方程中,a,b的几何意义分别是什么?a+xbya+xby新知探究21ˆ()niiiQyya+xbya+xby是回归方程的截距是回归方程的斜率ab),过样本中心点(+回归直线方程yxxbya新知探究是回归方程的截距是回归方程的斜率ab),过样本中心点(+回归直线方程yxxbya20253035404550556065510152025303540脂肪含量0知识探究(四):回归方程思考6:利用计算器或计算机可求得年龄和人体脂肪含量的样本数据的回归方程为,由此我们可以根据一个人个年龄预测其体内脂肪含量的百分比的回归值.若某人37岁,则其体内脂肪含量的百分比约为多少?48.0577.0xy20.9%新知探究48.0577.0xy若某人65岁,可预测他体内脂肪含量在37.1%(0.577×65-0.448=37.1%)附近的可能性比较大。但不能说他体内脂肪含量一定是37.1%原因:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差,即使截距斜率没有误差,也不可能百分百地保证对应于x,预报值Y能等于实际值y新知探究第一步,计算平均数;,yx第二步,求和;,niiniiixyx121第三步,计算;)())((1221121xbyaxnxyxnyxxxyyxxbniiniiiniiniii,第四步,写出回归方程.abxy求样本数据的线性回归方程,可按下列步骤进行:新知探究第一步,计算平均数;,yx第二步,求和;,niiniiixyx121第三步,计算;)())((1221121xbyaxnxyxnyxxxyyxxbniiniiiniiniii,第四步,写出回归方程.abxy例1:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:摄氏温度热饮杯数-515601504132712812130151161910423892793317636541、画出散点图;2、从散点图中发现气温与热饮销售杯数之间关系的一般规律;3、求回归方程;4、如果某天的气温是2摄氏度,预测这天卖出的热饮杯数。新知探究摄氏温度热饮杯数-51560150413271281213015116191042389279331763654热氏温度/℃热饮杯数-51560150413271281013015116191042389279331763654-10-50510152025303540020406080100120140160180Series1;热饮杯数;156热饮杯数;150热饮杯数;132热饮杯数;128热饮杯数;130热饮杯数;116热饮杯数;104热饮杯数;89热饮杯数;93热饮杯数;76热饮杯数;54f(x)=−2.34973073736537x+147.309548467274热饮杯数新知探究练习:给出施化肥量对水稻产量影响的试验数据:施化肥量x15202530354045水稻产量y330345365405445450455(1)画出上表的散点图;(2)求出回归直线并且画出图形.新知探究从而得回归直线方程是3.399,30yx777221117000,1132725,87175iiiiiiixyxy2573075.43.399,75.430770003.399307871752ab^4.75257yx解:(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格20475180001557512150912569004950xiyi455450445405365345330yi45403530252015xi7654321i.(图形略)故可得到新知探究3.399,30yx777221117000,1132725,87175iiiiiiixyxy2573075.43.399,75.430770003.399307871752ab^4.75257yx2.回归方程被样本数据惟一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.课堂小结感谢您下载68素材平台上提供的PPT作品,为了您和68素材以及原创作者的利益,请勿复制、传播、销售;素材均来源于网络用户分享,故68素材不具备充分的监控能力来审查图片是否存在侵权等情节。68素材不拥有此类图片的版权,本站所有资源仅供学习与交流,不得用于任何商业用途的范围,用户应自觉遵守著作权法及其他相关法律的规定,不得侵犯本网站及权利人的合法权利,给68素材和任何第三方造成损失的,侵权用户应负全部责任。版权声明讲解人:办公资源时间:2020.6.1MENTALHEALTHCOUNSELINGPPT感谢你的聆听第2章统计人教版高中数学必修3


  • 编号:1701021255
  • 分类:数学
  • 软件: wps,office Excel
  • 大小:30页
  • 格式:xlsx
  • 风格:其他
  • PPT页数:2038184 KB
  • 标签:

广告位推荐

相关数学更多>