Login
升级VIP 登录 注册 安全退出
当前位置: 首页 > word文档 > 其他文档 > 常用微分公式 (7),常用微分公式

常用微分公式 (7),常用微分公式

收藏

本作品内容为常用微分公式 (7),格式为 doc ,大小 416808 KB ,页数为 6页

常用微分公式 (7)


('..-§1-3微分公式(甲)基本函数的微分公式(1)=nxn\uf02d1,n\uf0ceN。(2)。(3)=0,其中c为常数。(4)(sinx)/=cosx(5)(cosx)/=\uf02dsinx另一种表示:\uf081(xn)/=nxn\uf02d1\uf082=\uf083(c)/=0证明:(2)设a为f(x)=定义域中的任意点,则f/(a)=====()=()(4)设a为任意实数,f(x)=sinx==计算f/(a)==()=cosa。(1)(3)(5)自证(乙)导数的四则运算(1)f(x)与g(x)为可微分的函数。f(x)+g(x)为可微分的函数。且(f(x)+g(x))=(f(x))+(g(x))成立。另一种表示:(f(x)+g(x))/=f/(x)+g/(x)证明:令h(x)=f(x)+g(x),设a为h(x)定义域中的任一点h/(a)===(+)=()+()=f/(a)+g/(a)例:求?推论:(f1(x)+f2(x)+...+fn(x))=(2)设f(x)为可微分的函数。cf(x)为可微分的函数。且(cf(x))=c,特别c=\uf02d1时,(\uf02df(x))=\uf02d。(3),另一种表示:(f(x)\uf02dg(x))/=f/(x)\uf02dg/(x)(4)(c1f1(x)+c2f2(x)+...+fn(x))=c1(f1(x))+c2(f2(x))+...+(fn(x))例如:(1)(anxn+an\uf02d1xn\uf02d1+...+a1x+a0)(2)(3x5\uf02d2x3+4)/=?(5)f(x),g(x)为可微分的函数。f(x)g(x)为可微分的函数。且(f(x)\uf0d7g(x))=(f(x))\uf0d7g(x)+f(x)\uf0d7(g(x))另一种表示:(f(x)\uf0d7g(x))/=f/(x)\uf0d7g(x)+f(x)\uf0d7g/(x)证明:例如:试求下面我们要推导例2的一般情形:(a)=(b)(逐次轮流微分)(c)如果,则可得例如:试求的导数。[例題1]证明。-..可修编...-(6)若f(x),g(x)在x=a可微分,且,则。因此可得:若f(x)=1,则()/=例如:试求的导函数。例如:求()/=?例如:设为负有理数,证明。结论:若设r为有理数,则。[例題2]求下列各函数的导函数:(1)(x2+2x)(x2+3x+2)(2)(x\uf02d2)3(x2\uf02d1)(3)(x2+x+1)(4x3+x\uf02d4)(x+3)(3)(4)Ans:(1)4x3+15x2+16x+4(2)(x\uf02d2)2(5x2\uf02d4x\uf02d3)(3)(2x+1)(4x3+x\uf02d4)(x+3)+(x2+x+1)(12x2+1)(x+3)+(x2+x+1)(4x3+x\uf02d4)(4)(5)[例題3]请利用(sinx)/=cosx,(cosx)/=\uf02dsinx的结果证明:(tanx)/=sec2x,(secx)/=secx\uf0d7tanx(練習1.)试求下列的导函数:(1)x3\uf02d6x2+7x\uf02d11(2)(x3+3x)2(2x+1)(3)(x+1)(2x2+2)(3x2+x+1)(4)(2x3+x+1)5Ans:(1)3x2\uf02d12x+7(2)2(x3+3x)(3x2+3)(2x+1)+2(x3+3x)(3)(2x2+2)(3x2+x+1)+(x+1)\uf0d7(4x)\uf0d7(3x2+x+1)+(x+1)(2x2+2)\uf0d7(6x+1)(4)5(2x3+x+1)4\uf0d7(6x2+1)(練習2.)求下列各函数的导函数。(1)f(x)=(2)f(x)=(3)f(x)=(4)f(x)=Ans:(1)(2)(3)\uf0d7(12x2+6x+2)(4)(練習3.)证明,-..可修编...-(丙)连锁法则(1)合成函数:(a)设,则。,所以为x的函数。(b)(2)连锁法则:既然为x的函数,我们就可以讨论例:设,则利用,可得=上式并不是巧合,一般的情形亦是如此。定理:(连锁法则ChainRule)若f(x),g(y)都是可微分的函数,则合成函数亦可微分,而且。[例題4]求?一般情形:,f(x)可微分,求=?[例題5]求f(x)=sin2x的导函数。Ans:2sinx\uf0d7cosx[例題6]求下列函数的导函数:(1)(2)(3)Ans:(1)3tan2x\uf0d7sec2x(2)\uf02d5csc5x\uf0d7cot5x(3)-..可修编...-(練習4.)设n为正整数而f(x)为可微分的函数,试用连锁律去计算(f(x))n的导函数。Ans:n(f(x))n\uf02d1\uf0d7f/(x)(練習5.)求(=?Ans:\uf0d7(4x3+6x\uf02d1)(練習6.)Ans:(練習7.)求下列各小题y/(1)(2)(3)(4)(5)Ans:(1)(2)(3)(4)(5)(練習8.)计算下列各小题:(1)(x\uf0d7)/=?Ans:(2)()=?Ans:(3)求f(x)=的导函数。Ans:f/(x)=(練習9.)设可微函数f(x)满足f()=x,则f/(0)=?Ans:2[例題7]试求?(練習10.)试求的导函数。Ans:(練習11.)求f(x)=的导函数。Ans:f/(x)=(練習12.),求f/(3)=?(練習13.)设y=(x+)10,试求=?Ans:\uf0d7(x+)10[例題8]求斜率为2,而与曲线y=f(x)=x3\uf02dx2+相切之直线方程式。Ans:4x\uf02d2y+3=0,2x\uf02dy\uf02d3=0-..可修编...-(練習14.)求过曲线y=f(x)=x3+x2\uf02d2的点,而斜率最小的切线方程式。Ans:y+=(\uf02d1)(x+1)(練習15.)求通过y=x3\uf02d3x2\uf02d4x\uf02d1上x=1处之切线与法线方程式。Ans:7x+y=0,x\uf02d7y\uf02d50=0(練習16.)函数f(x)=的图形上以(0,\uf02d1)为切点的切线斜率为。Ans:1[例題9]设拋物线y=ax2+bx+c与直线7x\uf02dy\uf02d8=0相切于点(2,6),而与直线x\uf02dy+1=0相切,求a,b,c之值。Ans:a=3,b=\uf02d5,c=4(85日大自然)[例題10]直角坐标上,给定一曲线\uf047:y=x3\uf02d3x2,自点P(2,\uf02d5)向\uf047所作的切线方程式。Ans:3x+y\uf02d1=0,15x\uf02d4y\uf02d50=0(練習17.)过原点且与曲线y=x3\uf02d3x2\uf02d1相切之直线方程式。Ans:y=\uf02d3x,y=。(練習18.)设拋物线y=ax2+bx+c过点(1,1),且与直线x\uf02dy=3相切于(2,\uf02d1)。求a,b,c之值Ans:a=3,b=\uf02d11,c=9[例題11]设a,b,c为实数,已知二曲线y=x2+ax+b与y=\uf02dx3+c在点A(1,\uf02d2)处相切,L为两曲线在A点的公切线,试求(1)a,b,c(2)求L的方程式。Ans:(1)a=\uf02d5,b=2,c=\uf02d1(2)3x+y\uf02d1=0(練習19.)拋物线\uf047:y=p(x)的对称轴平行于y轴,且\uf047与x轴交于点(2,0),并在x=1时与函数y=x4+1的图形相切,试求p(x)=?Ans:p(x)=\uf02d6x2+16x\uf02d8(練習20.)求y=x3\uf02d3x,y=x3\uf02d3x+32两曲线的公切线方程式。Ans:9x\uf02dy+16=0综合练习-..可修编...-1.(1),求=?(2),求f/()=?(3)f(x)=x3(x3+5x)10,求f/(x)Ans:(1)(2)(3)2.求下列各函数的导函数:(1)(2)(3)Ans:(1)(2)(3)3.试求下列个函数的导函数:(1)(2)(3)(4)(5)(6)(7)(8)Ans:(1)(2)(3)(4)(5)(6)0(7)(8)4.(1)设,若f/(1)=2,则a=?(2)设,则f/(2)=?Ans:(1)2(2)5.设,,求=?Ans:6.求在(1,0)的切线方程式与法线方程式。Ans:y=0,x=17.曲线在x=\uf02d1处之切线方程式。Ans:2x+y+3=08.设f(x)=x3+ax2+b,,若y=f(x)之图形通过点(1,4)且在此点的斜率为\uf02d3,则求a,b之值为何?Ans:a=\uf02d3,b=69.若直线y=x与曲线y=x3\uf02d3x2+ax相切,试求a=?Ans:a=1或10.过点,且与曲线相切的直线有几条?其斜率分别为何?Ans:(1)3(2)0,3\uf0b12-..可修编.',)


  • 编号:1700757865
  • 分类:其他文档
  • 软件: wps,office word
  • 大小:6页
  • 格式:docx
  • 风格:商务
  • PPT页数:416808 KB
  • 标签:

广告位推荐

相关其他文档更多>