Login
升级VIP 登录 注册 安全退出
当前位置: 首页 > word文档 > 其他文档 > RS485匹配电阻相关,rs485匹配电阻的作用

RS485匹配电阻相关,rs485匹配电阻的作用

收藏

本作品内容为RS485匹配电阻相关,格式为 doc ,大小 384552 KB ,页数为 35页

RS485匹配电阻相关


('RS485匹配电阻相关对RS-422与RS-485总线网络一般要使用终接电阻进行匹配。但在短距离与低速率下可以不用考虑终端匹配。那么在什么情况下不用考虑匹配呢,理论上,在每个接收数据信号的中点进行采样时,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。但这在实际上难以掌握,美国MAXIM公司有篇文章提到一条经验性的原则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配:当信号的转换时间(上升或下降时间)超过电信号沿总线单向传输所需时间的3倍以上时就可以不加匹配。例如具有限斜率特性的RS-485接口MAX483输出信号的上升或下降时间最小为250ns,典型双绞线上的信号传输速率约为0.2m/ns(24AWGPVC电缆),那么只要数据速率在250kb/s以内、电缆长度不超过16米,采用MAX483作为RS-485接口时就可以不加终端匹配。一般终端匹配采用终接电阻方法,前文已有提及,RS-422在总线电缆的远端并接电阻,RS-485则应在总线电缆的开始和末端都需并接终接电阻。终接电阻一般在RS-422网络中取100Ω,在RS-485网络中取120Ω。相当于电缆特性阻抗的电阻,因为大多数双绞线电缆特性阻抗大约在100,120Ω。这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大功率,对于功耗限制比较严格的系统不太适合。A:我们公司的做法是:在485的任何一个节点上,对A上拉;对B下拉,具体接线就是:(+5V---R1---A---R2---B---R3---GND),其中R1:3.3K,R2:180欧姆,R3:3.3K,取消原来的120欧电阻,这样在总线空闲的时候就保证A比B高出大约200mV的电压,也就是说能保证总线上的数据状态在空闲的时候是稳定的1。这可是我们公司几年的现场经验得来的,效果很好,保证比原来那种方式好多了.B:确有可取之处,但是请问:在485的任何一个节点上,对A上拉,对B下拉,如果节点多了485驱动能力恐怕支撑不了吧,C:485通信总线上的匹配电阻究竟应该怎样配才能使通信总线稳定可靠呢,为什么我在总线的首尾各配120欧的电阻,总线仍然不稳定,究竟有那些因素干扰了它,D:个人经验:485总线的匹配电阻与该总线上的设备有关。主要是总线上设备的输入阻抗和输出阻抗对485总线的特性阻抗影响比较大。所以在匹配485总线的终端电阻时最好使用一个可调电阻来不断的测试。或者使用设备测量出该485总线的特性阻抗,然后加以相应的电阻与之匹配。还有就是使用理论计算也可以计算出给485总线的相应的数据。E:485通信总线上的匹配电阻只在末端出现,如果设备较多(接近32个)可以不接匹配电阻;另外485通信总线虽然手册上说可以选用双绞线,但最好还是选用两芯屏蔽线且屏蔽网不得两端接地。我的经验就是这样,且从没发现有干扰~F:我觉得485通讯总线的匹配电阻的选择,大家可以用这个简单的办法试一下:把一个电位器接在A—B之间,然后用示波器测A——B之间的波形。什么时候波形最好,就把此时电位器接在A——B两端之间的两脚的电阻值量出来,然后用同样阻值的电阻代替电位器。G:总线不稳定不一定是硬件引起的,我建议查找一下,是否存在软件方面的BUG。使用RS485方式通讯需要注意的一些问题一、几种常见的错误认识1(RS485总线的通讯距离可以达到1200米。其实只是RS485总线结构理论上,在理想环境的前提下才有可能使得传输距离达到1200米。一般是指通讯线材优质达标,波特率为9600bps,只有一台RS485设备才能使得通讯距离达到1200米,而且能通讯并不代表每次通讯都正常。所以通常RS485总线实际的稳定的通讯距离远远达不到1200米。负载RS485设备多,线材阻抗不合乎标准,线径过细,转换器品质不良,设备防雷保护,波特率的加高等等因素都会降低通讯距离。2.RS485总线可以带256台设备进行通讯。其实并不是所有RS485总线都能够带256台设备的。要根据RS485转换器内芯片采用的型号和RS485设备芯片采用的型号来判断的。谁低就谁的带载能力标准。一般RS485芯片负载能力有三个级别:32台、128台、256台。理论上的标称往往实际上是达不到的。通讯距离越长,波特率越高,线径越细,线材质量越差,转换器品质越差,转换器电能供应不足(无源转换器),防雷保护越强这些都会大大降低真实负载数量。3.RS485总线是一种最简单最稳定最成熟的工业总线结构。这种概念是错误的。应该是:RS485总线是一种用于设备联网的经济型的传统的工业总线方式。通讯质量是需要根据施工经验进行测试和调试的。RS485总线虽然简单,但必须严格安照施工规范进行布线。二、RS485通讯线缆说明专用四芯多股屏蔽双绞线;线芯?0.5平方毫米?避免阳光直射,PVC胶管,软管,线槽保护。?无强磁场环境干扰或产生强磁场设备运作环境。?避雷措施及设备完善,接地措施。RS485+和RS485-这两条数据线一定要互为双绞。布线一定要布多股屏蔽双绞线,多股是为了备用,屏蔽是为了出现特殊情况时调试,双绞是因为RS485通讯采用差模通讯原理,双绞的抗干扰性最好。不采用双绞线,是极端错误的。RS485总线一定要是手牵手式的总线结构,坚决杜绝星型连接和分叉连接。设备供电的交流电一定要真实接地,而且接地良好。有很多地方表面上有三角插座,其实根本没有接地,要小心。接地良好时,可以确保设备防雷击、浪涌冲击。静电累计时,可以配合设备的防雷设计较好地释放能量。保护RS485总线设备和相关芯片不受伤害。避免和强电走在一起,以免强电对其产生干扰。三、推荐的几种调试方法首先要确保设备接线正确,且严格合乎规范。共地法:用一条线或者屏蔽线将所有RS485设备的GND线连接起来,有需要的情况下将每个设备的连地点加一限流电阻(防止二台设备之间GND参考值差别太大对通讯产生干扰),这样可以避免所有设备之间存在影响通讯的电势差。终端电阻法:在最后一台RS485设备的RS485+和RS485-上并接一个120欧姆的终端电阻来改善通讯质量。中间分段断开法:通过从中间断开来检查是否是设备负载过多、通讯距离过长、某台设备损害对整个通讯线路的影响等原因。单独拉线法:单独简易暂时拉一条线到设备,这样可以用来排除是否是布线引起了通讯故障。更换转换器法:随身携带几个转换器,这样可以排除是否是转换器质量问题影响了通讯质量。笔记本调试法:先保证自己随身携带的电脑笔记本是通讯正常的设备,替换客户电脑,来进行通讯,如果可以,则表明客户的电脑的串口有可能被损害或者受伤。四、施工注意事项工程施工布线、安装、测试总要求是安全第一,质量第二,效率第三。要注意以下几点:1(RS485理论极限传输距离为1200米,在一条RS485通讯线上不能多出32台终端机。在有必要的情况下可以增加中继器(信号放大器)。2(在线与线的接头处一定要用焊接(接头处不能受力),二线之间的焊接距离最好在5CM以上,防止线被拉动绝缘破损时二线断路,并用绝缘电工胶布将焊接点牢固包扎。在选购线材的时候采用的是40.5平方毫米的四芯多股屏蔽双绞线。如果通讯效果不佳,现场有干扰,接线过程中要把屏蔽层接地。3(每台终端机设备必须接一个独立电源插座。切记不要带电接线,尤其强电。4(现场的接线尽量统一、标准。做好永久标记,杜绝误接线导致人员和设备的伤害。接头绝缘胶布要牢、而且美观。5(RS485通讯线的正负可测量,尽量分颜色标识。理论上接屏蔽线,线越粗越好,现场最好一条总线统一一种线材。拉线前对线进行测试。AC220V电源线各分支最好用1mm或以上的电源线。6(一般室内布线用塑料管,室外布线用铁管。要求现场布线一律穿管。走管尽量横平竖直,靠墙固定。强电、弱电分开布线,两管相隔要求大于20CM。7(设备通电调试时,一台一台的插电测试,注意可能存在短路和断路的情况,通电时做好相关安全措施。通电前用万用表测试各强弱电电源线防止短接。8(强电线路通电测试,要有人值守,随时处理各种突发情况,最好接电前测试好自己线路,让现场客户电工负责通电测试。一般连续通电6个小时后无问题,才能现场通电离开人。9(工程施工中,现场测试用电源、工具等设备在人离开时要断电,现场工具、材料要交接保管好。10(现场施工要遵守现场要求,不要吸烟、酗酒施工,最好带上施工卡片或相关身份标识,不要妨碍别人工作、大声喧哗,注意衣着、行为等形象。现场相关客户联系人和负责人的联系方式要记录。外包施工时,要管理好相关外包作业人员,积极协调现场各方有关工具借用、工作时间不能作业、水电等使用的的相关矛盾。11(门禁施工中电锁、读头的接线都有距离限制。所以施工中尽量用较粗的线。电锁的锁孔切割、位置安装、选型要考虑现场环境、门和框的材料,做到美观、安全、耐用。五、施工调试常用到的工具1(万用表;2(烙铁、焊锡;3(镊子、手动螺丝刀、电动螺丝刀(包括“一字”和“十字”)4(斜口钳;5(电源5V、12V各一个;6(示波器,可查看电源波形;7(发卡器;8(IC启拔器;9(电工胶布,防水胶布;10(其他专用工具{卡/RS485转换器/USB转串口转换器/活动板手/内六角/卷尺/}等。提高RS485总线可靠性的几种方法及常见故障处理在MCU之间中长距离通信的诸多方案中,RS485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。但RS485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS485总线的运行可靠性至关重要。1(RS485接口电路的硬件设计(1)总线匹配总线匹配有两种方法,一种是加匹配电阻,如图1a所示。位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。另外一种比较省电的匹配方案是RC匹配(图2)利用一只电容C隔断直流成分,可以节省大部分功率,但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。除上述两种外还有一种采用二极管的匹配方案(图3),这种方案虽未实现真正的匹配,但它利用二极管的钳位作用,迅速削弱反射信号达到改善信号质量的目的,节能效果显著。(2)RO及DI端配置上拉电阻异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。为防止干扰信号误触发RO(接收器输出)产生负跳变,使接收端MCU进入接收状态,建议RO外接10kΩ上拉电阻。(3)保证系统上电时的RS485芯片处于接收输入状态对于收发控制端TC建议采用MCU引脚通过反相器进行控制,不宜采用MCU引脚直接进行控制,以防止MCU上电时对总线的干扰,如图4所示。(4)总线隔离RS485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口VA、VB与总线之间应加以隔离。通常在VA、VB与总线之间各串接一只4~10Ω的PTC电阻,同时与地之间各跨接5V的TVS二极管,以消除线路浪涌干扰。如没有PTC电阻和TVS二极管,可用普通电阻和稳压管代替。(5)合理选用芯片例如,对外置设备为防止强电磁(雷电)冲击,建议选用TI的75LBC184等防雷击芯片,对节点数要求较多的可选用SIPEX的SP485R。2(RS485网络配置(1)网络节点数网络节点数与所选RS485芯片驱动能力和接收器的输入阻抗有关,如75LBC184标称最大值为64点,SP485R标称最大值为400点。实际使用时,因线缆长度、线径、网络分布、传输速率不同,实际节点数均达不到理论值。例如75LBC184运用在500m分布的RS485网络上节点数超片最大值的70%过50或速率大于9.6kb/s时,工作可靠性明显下降。通常推荐节点数按RS485芯选取,传输速率在1200~9600b/s之间选取。通信距离1km以内,从通信效率、节点数、通信距离等综合考虑选用4800b/s最佳。通信距离1km以上时,应考虑通过增加中继模块或降低速率的方法提高数据传输可靠性。(2)节点与主干距离理论上讲,RS485节点与主干之间距离(T头,也称引出线)越短越好。T头小于10m的节点采用T型,连接对网络匹配并无太大影响,可放心使用,但对于节点间距非常小(小于1m,如LED模块组合屏)应采用星型连接,若采用T型或串珠型连接就不能正常工作。RS485是一种半双工结构通信总线,大多用于一对多点的通信系统,因此主机(PC)应置于一端,不要置于中间而形成主干的T型分布。3(提高RS485通信效率RS485通常应用于一对多点的主从应答式通信系统中,相对于RS232等全双工总线效率低了许多,因此选用合适的通信协议及控制方式非常重要。(1)总线稳态控制(握手信号)大多数使用者选择在数据发送前1ms将收发控制端TC置成高电平,使总线进入稳定的发送状态后才发送数据;数据发送完毕再延迟1ms后置TC端成低电平,使可靠发送完毕后才转入接收状态。据笔者使用TC端的延时有4个机器周期已满足要求。(2)为保证数据传输质量,对每个字节进行校验的同时,应尽量减少特征字和校验字。惯用的数据包格式由引导码、长度码、地址码、命令码、数据、校验码、尾码组成,每个数据包长度达20~30字节。在RS485系统中这样的协议不太简练。推荐用户使用MODBUS协议,该协议已广泛应用于水利、水文、电力等行业设备及系统的国际标准中。4(RS485接口电路的电源、接地对于由MCU结合RS485微系统组建的测控网络,应优先采用各微系统独立供电方案,最好不要采用一台大电源给微系统并联供电,同时电源线(交直流)不能与RS485信号线共用同一股多芯电缆。RS485信号线宜选用截面积0.75mm2以上双绞线而不是平直线。对于每个小容量直流电源选用线性电源LM7805比选用开关电源更合适,当然应注意LM7805的保护。(1)LM7805输入端与地应跨接220~1000μF电解电容;(2)LM7805输入端与输出端反接1N4007二极管;(3)LM7805输出端与地应跨接470~1000μF电解电容和104pF独石电容并反接1N4007二极管;(4)输入电压以8~10V为佳,最大允许范围为6.5~24V。可选用TI的PT5100替代LM7805,以实现9,38V的超宽电压输入。5(光电隔离在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。虽然RS485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS485接收器的极限接收电压,即大于+12V或小于,7V时,接收器就再也无法正常工作了,严重时甚至会烧毁芯片和仪器设备。解决此类问题的方法是通过DC-DC将系统电源和RS485收发器的电源隔离;通过光耦将信号隔离,彻底消除共模电压的影响。实现此方案的途径可分为:(1)用光耦、带隔离的DC-DC、RS485芯片构筑电路;(2)使用二次集成芯片,如PS1480、MAX1480等。6(RS485系统的常见故障及处理方法RS485是一种低成本、易操作的通信系统,但是稳定性弱同时相互牵制性强,通常有一个节点出现故障会导致系统整体或局部的瘫痪,而且又难以判断。故向读者介绍一些维护RS485的常用方法。(1)若出现系统完全瘫痪,大多因为某节点芯片的VA、VB被电源击穿,使用万用表测VA、VB间差模电压为零,而对地的共模电压大于3V,此时可通过测共模电压大小来排查,共模电压越大说明离故障点越近,反之越远。(2)总线连续几个节点不能正常工作。一般是由其中的一个节点故障导致的。一个节点故障会导致邻近的2,3个节点(一般为后续)无法通信,因此将其逐一与总线脱离,如某节点脱离后总线能恢复正常,说明该节点故障。(3)集中供电的RS485系统在上电时常常出现部分节点不正常,但每次又不完全一样。这是由于对RS485的收发控制端TC设计不合理,造成微系统上电时节点收发状态混乱从而导致总线堵塞。改进的方法是将各微系统加装电源开关然后分别上电。(4)系统基本正常但偶尔会出现通信失败。一般是由于网络施工不合理导致系统可靠性处于临界状态,最好改变走线或增加中继模块。应急方法之一是将出现失败的节点更换成性能更优异的芯片。(5)因MCU故障导致TC端处于长发状态而将总线拉死一片。提醒读者不要忘记对TC端的检查,尽管RS485规定差模电压大于200mV即能正常工作。但实际测量:一个运行良好的系统其差模电压一般在1.2V左右(因网络分布、速率的差异有可能使差模电压在0.8~1.5V范围内)。RS485总线的理论与实践当前自动控制系统中常用的网络,如现场总线CAN、Profibus、INTERBUS-S以及ARCNet的物理层都是基于RS485的总线进行总结和研究的。一、RS485标准在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在RS422标准的基础上,EIA研究出了一种支持多节点、远距离和接收高灵敏度的RS485总线标准。RS485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求:1(接收器的输入电阻RIN?12kΩ。2(驱动器能输出?7V的共模电压。3(输入端的电容?50pF。4(在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关)。5(接收器的输入灵敏度为200mV(即(V+)-(V-)?0.2V,表示信号“0”;(V+)-(V-)?-0.2V,表示信号“1”)。因为RS485的远距离、多节点(32个)以及传输线成本低的特性,使得RS485成为工业应用中数据传输的首选标准。二、影响RS485总线通讯速度和通信可靠性的三个因素1(在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。从理论上分析,在传输电缆的末端只要跨接了与电缆特性阻抗相匹配的终端电阻,就再也不会出现信号反射现象。但是,在实现应用中,由于传输电缆的特性阻抗与通讯波特率等应用环境有关,特性阻抗不可能与终端电阻完全相等,因此或多或少的信号反射还会存在。引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。信号反射对数据传输的影响,归根结底是因为反射信号触发了接收器输入端的比较器,使接收器收到了错误的信号,导致CRC校验错误或整个数据帧错误。在信号分析,衡量反射信号强度的参数是RAF(RefectionAttenuationFactor反射衰减因子)。它的计算公式为RAF=20lg(Vref/Vinc),式中:Vref—反射信号的电压大小;Vinc—在电缆与收发器或终端电阻连接点的入射信号的电压大小。具体的测量方法如图3所示。例如,由实验测得2.5MHz的入射信号正弦波的峰-峰值为+5V,反射信号的峰-峰值为+0.297V,则该通讯电缆在2.5MHz的通讯速率时,它的反射衰减因子为:RAF=20lg(0.297/2.5)=-24.52dB。要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。在通讯线路中,如何通过加偏置电阻提高通讯可靠性的原理,后面将做详细介绍。2(在通讯电缆中的信号衰减第二个影响信号传输的因素是信号在电缆的传输过程中衰减。一条传输电缆可以把它看出由分布电容、分布电感和电阻联合组成的等效电路,如图4所示。电缆的分布电容C主要是由双绞线的两条平行导线产生。导线的电阻在这里对信号的影响很小,可以忽略不计。信号的损失主要是由于电缆的分布电容和分布电感组成的LC低通滤波器。PROFIBUS用的LAN标准型二芯电感(西门子为DP总线选用的标准电缆),在不同波特率时的衰减系数如表1所示。表1电缆的衰减系数通讯波特率16MHz4MHz38.4kHz9.6kHz衰减体系数(1km)?42dB?22dB?4dB?2.5dB3(在通讯电缆中的纯阻负载影响通讯性能的第三个因素是纯阻性负载(也叫直流负载)的大小。这里指的纯阻性负载主要由终端电阻、偏置电阻和RS485收发器三者构成。在叙述RS485规范时曾提到过RS485驱动器在带了32个节点,配置了150Ω终端电阻的情况下,至少能输出1.5V的差分电压。一个接收器的输入电阻为12kΩ,整个网络的等效电路如图5所示。按这样计算,RS485驱动器的负载能力为:RL=32个输入电阻并联2个终端电阻=((12000/32)×(150/2))/(12000/32)+(150/2))?51.7Ω现在比较常用的RS485驱动器有MAX485、DS3695、MAX1488/1489以及和利时公司使用的SN75176A/D等,其中有的RS485驱动器负载能力可以达到20Ω。在不考虑其它诸多因素的情况下,按照驱动能力和负载的关系计算,一个驱动器可带节点的最大数量将远远大于32个。在通讯波特率比较高的时候,在线路上偏置电阻是很有必要的。偏置电阻的连接方法如图6。它的作用是在线路进入空闲状态后,把总线上没有数据时(空闲方式)的电平拉离0电平,如图7。这样一来,即使线路中出现了比较小的反射信号或干扰,挂接在总线上的数据接收器也不会由于这些信号的到来而产生误动作。在实际应用中,RS485总线加偏置电阻有两种方法:(1)把偏置电阻平衡分配给总线上的每一个收发器。这种方法给挂接在RS485总线上的每一个收发器加了偏置电阻,给每一个收发器都加了一个偏置电压。(2)在一段总线上只用一对偏置电阻。这种方法对总线上存在大的反射信号或干扰信号比较有效。值得注意的是偏置电阻的加入,增加了总线的负载。三、RS485总线的负载能力和通讯电缆长度之间的关系在设计RS485总线组成的网络配置(总线长度和带负载个数)时,应该考虑到三个参数:纯阻性负载、信号衰减和噪声容限。纯阻性负载、信号衰减这两个参数,在前面已经讨论过,现在要讨论的是噪声容限(NoiseMargin)。RS485总线接收器的噪声容限至少应该大于200mV。前面的论述者是在假设噪声容限为0的情况下进行的。在实际应用中,为了提高总线的抗干扰能力,总希望系统的噪声容限比RS485标准中规定的好一些。从下面的公式能看出总线带负载的多少和通讯电缆长度之间的关系:Vend=0.8(Vdriver-Vloss-Vnoise-Vbias)其中:Vend为总线末端的信号电压,在标准测定时规定为0.2V;Vdriver为驱动器的输出电压(与负载数有关。负载数在5,35个之间,Vdriver=2.4V;当负载数小于5,Vdriver=2.5V;当负载数大于35,Vdriver?2.3V);Vloss为信号在总线中的传输过程中的损耗(与通讯电缆的规格和长度有关),由表1提供的标准电缆的衰减系数,根据公式衰减系数b=20lg(Vout/Vin)可以计算出Vloss=Vin-Vout=0.6V(注:通讯波特率为9.6kbps,电缆长度1km,如果特率增加,Vloss会相应增大);Vnoise为噪声容限,在标准测定时规定为0.1V;Vbias是由偏置电阻提供的偏置电压(典型值为0.4V)。式中乘以0.8是为了使通信电缆不进入满载状态。从式中可以看出,Vdriver的大小和总线上带负载数的多少成反比,Vloss的大小和总线长度成反比,其他几个参数只和用的驱动器类型有关。因此,在选定了驱动器的RS485总线上,在通信波特率一定的情况下,带负载数的多少,与信号能传输的最大距离是直接相关的。具体关系是:在总线允许的范围内,带负载数越多,信号能传输的距离就越小;带负载数据少,信号能传输的距离就发越远。四、分布电容对RS485总线传输性能的影响电缆的分布电容主是由双绞线的两条平行导线产生。另外,导线和地之间也存在分布电容,虽然很小,但在分析时也不能忽视。分布电容对总线传输性能的影响,主要是因为总线上传输的是基波信号,信号的表达方式只有“1”和“0”。在特殊的字节中,例如0x01,信号“0”使得分布电容有足够的充电时间,而信号“1”到来时,由于分布电容中的电荷,来不及放电,(Vin+)—(Vin-)-还大于200mV,结果使接爱误认为是“0”,而最终导致CRC校验错误,整个数据帧传输错误。具体过程如图8所示。由于总线上分布影响,导致数据传输错误,从而使整个网络性能降低。解决这个问题有两种方法:(1)降低数据传输的波特率;(2)使用分布电容小的电缆,提高传输线的质量。RS232、RS422与RS485标准及应用一、RS232、RS422与RS485的由来RS232、RS422与RS485都是串行数据接口标准,最初都是由电子工业协会(EIA)制订并发布的,RS232在1962年发布,命名为EIA-232-E,作为工业标准,以保证不同厂家产品之间的兼容。RS422由RS232发展而来,它是为弥补RS232之不足而提出的。为改进RS232通信距离短、速率低的缺点,RS422定义了一种平衡通信接口,将传输速率提高到10Mb/s,传输距离延长到4000英尺(速率低于100kb/s时),并允许在一条平衡总线上连接最多10个接收器。RS422。为扩展应用是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准范围,EIA又于1983年在RS422基础上制定了RS485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA提出的建议标准都是以“RS”作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS作前缀称谓。RS232、RS422与RS485标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议。因此在视频界的应用,许多厂家都建立了一套高层通信协议,或公开或厂家独家使用。如录像机厂家中的Sony与松下对录像机的RS422控制协议是有差异的,视频服务器上的控制协议则更多了,如Louth、Odetis协议是公开的,而ProLINK则是基于Profile上的。二、RS232串行接口标准目前RS232是PC机与通信工业中应用最广泛的一种串行接口,RS232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS232采取不平衡传输方式,即所谓单端通讯。图1收、发端的数据信号是相对于信号地,如从DTE设备发出的数据在使用DB25连接器时是2脚相对7脚(信号地)的电平,DB25各引脚定义参见图1。典型的RS232信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5,+15V,负电平在-5,-15V电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS232电平再返回TTL电平。接收器典型的工作电平在+3,+12V与-3,-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20kb/s。RS232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3,7kΩ。所以RS232适合本地设备之间的通信。其有关电气参数参见表1。表1三、RS422与RS485串行接口标准1(平衡传输RS422、RS485与RS232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B,如图2。图2通常情况下,发送驱动器A、B之间的正电平在+2,+6V,是一个逻辑状态,负电平在-2,6V,是另一个逻辑状态。另有一个信号地C,在RS485中还有一“使能”端,而在RS422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。接收器也作与发送端相对的规定,收、发端通过平衡双绞线将AA与BB对应相连,当在收端AB之间有大于+200mV的电平时,输出正逻辑电平,小于-200mV时,输出负逻辑电平。接收器接收平衡线上的电平范围通常在200mV至6V之间。参见图3。图32(RS422电气规定RS422标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。图5是典型的RS422四线接口。实际上还有一根信号地线,共5根线。图4是其DB9连接器引脚定义。由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS422支持点对多的双向通信。接收器输入阻抗为4k,故发端最大负载能力是10×4k+100Ω(终接电阻)。RS422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)实现。RS422的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s。RS422需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输电缆的最远端。RS422有关电气参数见表。3(RS485电气规定由于RS485是从RS422基础上发展而来的,所以RS485许多电气规定与RS422相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS485可以采用二线与四线方式,二线制可实现真正的多点双向通信,参见图6。而采用四线连接时,与RS422一样只能实现点对多的通信,即只能有一个主(Master)设备,其余为从设备,但它比RS422有改进,无论四线还是二线连接方式总线上可多接到32个设备。参见图7。RS485与RS422的不同还在于其共模输出电压是不同的,RS485是-7V至+12V之间,而RS422在-7V至+7V之间,RS485接收器最小输入阻抗为12k,RS422是4k;RS485满足所有RS422的规范,所以RS485的驱动器可以用在RS422网络中应用。RS485有关电气规定参见表1。RS485与RS422一样,其最大传输距离约为1219米,最大传输速率为10Mb/s。平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能使用规定最长的电缆长度。只有在很短的距离下才能获得最高速率传输。一般100米长双绞线最大传输速率仅为1Mb/s。RS485需要2个终接电阻,其阻值要求等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输总线的两端。四、RS422与RS485的网络安装注意要点RS422可支持10个节点,RS485支持32个节点,因此多节点构成网络。网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。在构建网络时,应注意如下几点:1(采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。图8所示为实际应用中常见的一些错误连接方式(a、b、c)和正确的连接方式(d、e、f)。a、b、c这三种网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。2(应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。总之,应该提供一条单一、连续的信号通道作为总线。图8五、RS422与RS485传输线上匹配的一些说明对RS422与RS485总线网络一般要使用终接电阻进行匹配。但在短距离与低速率下可以不用考虑终端匹配。那么在什么情况下不用考虑匹配呢,理论上,在每个接收数据信号的中点进行采样时,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。但这在实际上难以掌握,美国MAXIM公司有篇文章提到一条经验性的原则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配:当信号的转换时间(上升或下降时间)超过电信号沿总线单向传输所需时间的3倍以上时就可以不加匹配。例如具有限斜率特性的RS485接口MAX483输出信号的上升或下降时间最小为250ns,典型双绞线上的信号传输速率约为0.2m/ns(24AWGPVC电缆),那么只要数据速率在250kb/s以内、电缆长度不超过16米,采用MAX483作为RS485接口时就可以不加终端匹配。一般终端匹配采用终接电阻方法,前文已有提及,RS422在总线电缆的远端并接电阻,RS485则应在总线电缆的开始和末端都需并接终接电阻。终接电阻一般在RS422网络中取100Ω,在RS485网络中取120Ω。相当于电缆特性阻抗的电阻,因为大多数双绞线电缆特性阻抗大约在100,120Ω。这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大功率,对于功耗限制比较严格的系统不太适合。另外一种比较省电的匹配方式是RC匹配,如图9。利用一只电容C隔断直流成分可以节省大部分功率。但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。还有一种采用二极管的匹配方法,如图10。这种方案虽未实现真正的“匹配”,但它利用二极管的钳位作用能迅速削弱反射信号,达到改善信号质量的目的,节能效果显著。六、RS422与RS485的接地问题电子系统接地是很重要的,但常常被忽视。接地处理不当往往会导致电子系统不能稳定工作甚至危及系统安全。RS422与RS485传输网络的接地同样也是很重要的,因为接地系统不合理会影响整个网络的稳定性,尤其是在工作环境比较恶劣和传输距离较远的情况下,对于接地的要求更为严格。否则接口损坏率较高。很多情况下,连接RS422、RS485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有下面二个原因:1(共模干扰问题:正如前文已述,RS422与RS485接口均采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。但人们往往忽视了收发器有一定的共模电压范围,如RS422共模电压范围为-7,+7V,而RS485收发器共模电压范围为-7,+12V,只有满足上述条件,整个网络才能正常工作。当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口。以图11为例,当发送驱动器A向接收器B发送数据时,发送驱动器A的输出共模电压为VOS,由于两个系统具有各自独立的接地系统,存在着地电位差VGPD。那么,接收器输入端的共模电压VCM就会达到VCM=VOS+VGPD。RS422与RS485标准均规定VOS?3V,但VGPD可能会有很大幅度(十几伏甚至数十伏),并可能伴有强干扰信号,致使接收器共模输入VCM超出正常范围,并在传输线路上产生干扰电流,轻则影响正常通信,重则损坏通信接口电路。图112(EMI问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。由于上述原因,RS422、RS485尽管采用差分平衡传输方式,但对整个RS422或RS485网络,必须有一条低阻的信号地。一条低阻的信号地将两个接口的工作地连接起来,使共模干扰电压VGPD被短路。这条信号地可以是额外的一条线(非屏蔽双绞线),或者是屏蔽双绞线的屏蔽层。这是最通常的接地方法。值得注意的是,这种做法仅对高阻型共模干扰有效,由于干扰源内阻大,短接后不会形成很大的接地环路电流,对于通信不会有很大影响。当共模干扰源内阻较低时,会在接地线上形成较大的环路电流,影响正常通信。笔者认为,可以采取以下三种措施:(1)如果干扰源内阻不是非常小,可以在接地线上加限流电阻以限制干扰电流。接地电阻的增加可能会使共模电压升高,但只要控制在适当的范围内就不会影响正常通信。(2)采用浮地技术,隔断接地环路。这是较常用也是十分有效的一种方法,当共模干扰内阻很小时上述方法已不能奏效,此时可以考虑将引入干扰的节点(例如处于恶劣的工作环境的现场设备)浮置起来(也就是系统的电路地与机壳或大地隔离),这样就隔断了接地环路,不会形成很大的环路电流。(3)采用隔离接口。有些情况下,出于安全或其它方面的考虑,电路地必须与机壳或大地相连,不能悬浮,这时可以采用隔离接口来隔断接地回路,但是仍然应该有一条地线将隔离侧的公共端与其它接口的工作地相连。参见图12。图12七、RS422与RS485的网络失效保护RS422与RS485标准都规定了接收器门限为?200mV。这样规定能够提供比较高的噪声抑制能力,如前文所述,当接收器A电平比B电平高+200mV以上时,输出为正逻辑,反之,则输出为负逻辑。但由于第三态的存在,即在主机在发端发完一个信息数据后,将总线置于第三态,即总线空闲时没有任何信号驱动总线,使AB之间的电压在-200,+200mV直至趋于0V,这带来了一个问题:接收器输出状态不确定。如果接收机的输出为0V,网络中从机将把其解释为一个新的启动位,并试图读取后续字节,由于永远不会有停止位,产生一个帧错误结果,不再有设备请求总线,网络陷于瘫痪状态。除上述所述的总线空闲会造成两线电压差低于200mV的情况外,开路或短路时也会出现这种情况。故应采取一定的措施避免接收器处于不确定状态。图13通常是在总线上加偏置,当总线空闲或开路时,利用偏置电阻将总线偏置在一个确定的状态(差分电压?-200mV)。如图13。将A上拉到地,B下拉到5V,电阻的典型值是1kΩ,具体数值随电缆的电容变化而变化。上述方法是比较经典的方法,但它仍然不能解决总线短路时的问题,有些厂家将接收门限移到-200mV/-50mV,可解决这个问题。例如Maxim公司的MAX3080系列RS485接口,不仅省去了外部偏置电阻,而且解决了总线短路情况下的失效保护问题。八、RS422与RS485的瞬态保护前文提到的信号接地措施,只对低频率的共模干扰有保护作用,对于频率很高的瞬态干扰就无能为力了。由于传输线对高频信号而言就是相当于电感,因此对于高频瞬态干扰,接地线实际等同于开路。这样的瞬态干扰虽然持续时间短暂,但可能会有成百上千伏的电压。实际应用环境下还是存在高频瞬态干扰的可能。一般在切换大功率感性负载如电机、变压器、继电器等或闪电过程中都会产生幅度很高的瞬态干扰,如果不加以适当防护就会损坏RS422或RS485通信接口。对于这种瞬态干扰可以采用隔离或旁路的方法加以防护。1(隔离保护方法。这种方案实际上将瞬态高压转移到隔离接口中的电隔离层上,由于隔离层电阻,不会产生损害性的浪涌电流,起到保护接口的作用。通常采用高频变压器、光耦的高绝缘等元件实现接口的电气隔离,已有器件厂商将所有这些元件集成在一片IC中,使用起来非常简便,如Maxim公司的MAX1480/MAX1490,隔离电压可达2500V。这种方案的优点是可以承受高电压、持续时间较长的瞬态干扰,实现起来也比较容易,缺点是成本较高。2(旁路保护方法。这种方案利用瞬态抑制元件(如TVS、MOV、气体放电管等)将危害性的瞬态能量旁路到大地,优点是成本较低,缺点是保护能力有限,只能保护一定能量以内的瞬态干扰,持续时间不能很长,而且需要有一条良好的连接大地的通道,实现起来比较困难。实际应用中是将上述两种方案结合起来灵活加以运用,如图14。在这种方法中,隔离接口对大幅度瞬态干扰进行隔离,旁路元件则保护隔离接口不被过高的瞬态电压击穿。图14RS232和RS485通讯方式RS232是串行数据接口标准,最初是由电子工业协会(EIA)制订并发布的,RS232在1962年发布,命名为EIA-232-E,作为工业标准,以保证不同厂家产品之间的兼容。RS422由RS232发展而来,它是为弥补RS232之不足而提出的。为改进RS232通信距离短、速率低的缺点,RS422定义了一种平衡通信接口,将传输速率提高到10Mb/s,传输距离延长到4000英尺(速率低于100kb/s时),并允许在一条平衡总线上连接最多10个接收器。RS422是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS422基础上制定了RS485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA提出的建议标准都是以“RS”作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS作前缀称谓。RS232通讯的基础知识:RS232通讯又叫串口通讯方式。是指计算机通过RS232国际标准协议用串口连接线和单台设备(控制器)进行通讯的方式。通讯距离:9600波特率下建议在13米以内。通讯速率(波特率BaudRate):缺省常用的是9600bps,常见的还有1200、2400、4800、19200、38400等。波特率越大,传输速度越快,但稳定的传输距离越短,抗干扰能力越差。备注:一般台式机会自带1-2个串口插座(9针插头上带针的俗称公头,带针孔的俗称母头),现在的笔记本一般不带串口插座,可以购买USB串口转换器。一般只用2、3、5号三根线。2:RxDReceiveData,Input;3:TxDTransmitData,Output;5:GNDGround。串口连接线:一般标配是3米以内。RS485通讯的基础知识:RS485和RS232的基本通讯机理是一致的,他的优点在于弥补了RS232通讯距离短,不能进行多台设备同时进行联网管理的缺点。计算机通过RS232/485转换器,依次连接多台485设备(门禁控制器),采用轮询的方式,对总线上的设备轮流进行通讯。接线标示是485+和485-,分别对应链接设备(控制器)的485+和485-。通讯距离:最远的设备(控制器)到计算机的连线理论上的距离是1200米,建议客户控制在800米以内,能控制在300米以内效果最好。如果距离超长,可以选购485信号放大器(中继器或称延长器),选购485信号放大器理论上可以延长到3000米。负载数量:即一条485总线可以带多少台设备(控制器),这个取决于控制器的通讯芯片和485转换器的通讯芯片的选型,一般有32台、64台、128台、256台几种选择,这个是理论的数字,实际应用时,根据现场环境、通讯距离等因素,负载数量达不到指标数。AS-MJ系列门禁控制器按256台设计,实际建议客户每条总线控制在80台以内。如果有几百上千台门禁控制器,请采用多串口卡或者485HUB来解决。485通讯总线(必须用双绞线,或者网线的其中一组),如果用普通的电线(没有双绞)干扰将非常大,通讯不畅,甚至通讯不上。每台AS-MJ系列门禁控制器设备必须手牵手地串下去,不可以有星型连接或者分叉。如果有星型连接或者分叉,干扰将非常大,通讯不畅,甚至通讯不上。以下是常见的错误的连接方式:RS422通讯的基础知识:他的通讯原理和RS485类似,区别在于他的总线是两组双绞线(4根线),分别标示为R+、R-、T+、T-。缺点是布线成本高,容易搞错。现在用得比较少了,这里就不详细介绍了。',)


  • 编号:1700753485
  • 分类:其他文档
  • 软件: wps,office word
  • 大小:35页
  • 格式:docx
  • 风格:商务
  • PPT页数:384552 KB
  • 标签:

广告位推荐

相关其他文档更多>