("2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B.明天下雪的概率为,表示明天有半天都在下雪C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.了解一批充电宝的使用寿命,适合用普查的方式2.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是()A.x<﹣3B.﹣3<x<0C.x<﹣3或x>0D.x>03.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为A.B.C.D.4.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个5.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.已知是一个单位向量,、是非零向量,那么下列等式正确的是()A.B.C.D.7.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是()A.0<y<1B.1<y<2C.2<y<3D.﹣3<y<﹣28.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是A.180个,160个B.170个,160个C.170个,180个D.160个,200个9.下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a1﹣)=22a﹣D.a•a2=a210.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AEAF⊥;②EF:AF=:1;③AF2=FH•FE;④∠AFE=DAE+CFEFB∠∠⑤:FC=HB:EC.则正确的结论有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.函数y=+的自变量x的取值范围是_____.12.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)13.分解因式:mx26mx+9m=_____﹣.14.计算:.15.已知在RtABC△中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′DAB⊥时,则线段AD的长为_____.16.计算×3结果等于_____.三、解答题(共8题,共72分)17.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为米.若苗圃园的面积为72平方米,求;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;18.(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数105(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?19.(8分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DEAC⊥于E,DFAB⊥于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.20.(8分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°=,cos37°=,tan37°=)(1)求把手端点A到BD的距离;(2)求CH的长.21.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.(1)求证:CDAB∥;(2)填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.22.(10分)如图1,在平面直角坐标系中,直线y=x+1﹣与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=1﹣,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=1﹣的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.23.(12分)已知PA与⊙O相切于点A,B、C是⊙O上的两点(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小24.实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,ADBC∥,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.【详解】A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B.“明天下雪的概率为”,表示明天有可能下雪,错误;C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D.了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差,全面调查与抽样调查,随机事件,概率的意义,比较基础,难度不大.2、C【解析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.【详解】∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,1=∴﹣,解得:x=3﹣,P∴(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.3、A【解析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:.故选:.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.4、B【解析】分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而00.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且10,如图A点,∴②错误;(−2,0)∵、(x1,0),且1−2a,2a+c>0∴,∴③正确;④由4a−2b+c=0得而00∴,∴④正确.所以①③④三项正确.故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与轴的交点,属于常考题型.5、D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,a>0∴,-b>0,b<0∴,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6、B【解析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A.由于单位向量只限制长度,不确定方向,故错误;B.符合向量的长度及方向,正确;C.得出的是a的方向不是单位向量,故错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.7、C【解析】分析:由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.详解:∵在中,﹣6<0,∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,∵当x=3﹣时,y=2,当x=2﹣时,y=3,∴当﹣3<x<﹣2时,2<y<3,故选C.点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.8、B【解析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.9、C【解析】解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=故选C10、C【解析】由旋转性质得到△AFBAED≌△,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解】解:由题意知,△AFBAED≌△AF=AE∴,∠FAB=EAD∠,∠FAB+BAE=EAD+BAE=BAD=90°.∠∠∠∠AEAF∴⊥,故此选项①正确;AFE=AEF=DAE+CFE∴∠∠∠∠,故④正确;AEF∵△是等腰直角三角形,有EF:AF=:1,故此选项②正确;AEF∵△与△AHF不相似,AF2=FH·FE∴不正确.故此选项③错误,HB//EC∵,FBHFCE∴△∽△,FB:FC=HB:EC∴,故此选项⑤正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、x≥1且x≠3【解析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:解得:且故答案为:且【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.12、或【解析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=BDF∠,或者∠C=BDF,∠等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.13、m(x3﹣)1.【解析】先把提出来,然后对括号里面的多项式用公式法分解即可。【详解】【点睛】解题的关键是熟练掌握因式分解的方法。14、【解析】此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式.【点睛】此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.15、或.【解析】①延长A'D交AB于H,则A'HAB⊥,然后根据勾股定理算出AB,推断出△ADHABC∽△,即可解答此题②同①的解题思路一样【详解】解:分两种情况:①如图1所示:设AD=x,延长A'D交AB于H,则A'HAB⊥,AHD∴∠=∠C=90°,由勾股定理得:AB==13,A∵∠=∠A,ADHABC∴△∽△,∴,即,解得:DH=x,AH=x,E∵是AB的中点,AE∴=AB=,HE∴=AEAH﹣=﹣x,由折叠的性质得:A'D=AD=x,A'E=AE=,sinA∴∠=sinA'∠=,解得:x=;②如图2所示:设AD=A'D=x,A'DAB∵⊥,A'HE∴∠=90°,同①得:A'E=AE=,DH=x,A'H∴=A'DDH﹣=x﹣=x,cosA∴∠=cosA'∠=,解得:x=;综上所述,AD的长为或.故答案为或.【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线16、1【解析】根据二次根式的乘法法则进行计算即可.【详解】故答案为:1.【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.三、解答题(共8题,共72分)17、(1)2(2)当x=4时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-)2+(6≤x≤4).①当x=时,S有最大值,S最大=;②当x=4时,S有最小值,S最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.18、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为5010523=12﹣﹣﹣(人),补全表格中的数据如下:血型ABABO人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19、(1)DE与⊙O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,DAO=DAC∴∠∠,OA=OD∵,DAO=ODA∴∠∠,DAC=ODA∴∠∠,ODAE∴∥,DEAC∵⊥,DEOD∴⊥,DE∴与⊙O相切.(2)连接BC,根据△ODF与△ABC相似,求得AC的长.AC=820、(1)12;(2)CH的长度是10cm.【解析】(1)、过点A作于点N,过点M作于点Q,根据RtAMQ△中α的三角函数得出得出AN的长度;(2)、根据△ANB和△AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案.【详解】解:(1)、过点A作于点N,过点M作于点Q.在中,.∴,∴,∴.(2)、根据题意:∥.∴.∴.∵,∴.∴.∴.∴.答:的长度是10cm.点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.21、(1)详见解析;(2)①67.5°;②90°.【解析】(1)要证明CDAB∥,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,ODCD∴⊥,即∠ODF=90°,AED∵∠=45°,AOD∴∠=2AED∠=90°,ODF∴∠=∠AOD,CDAB∴∥;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,AFDP∴⊥,∠AOD=90°,∠DAG=∠PAG,AGE∴∠=90°,∠DAO=45°,EAG∴∠=45°,∠DAG=∠PEG=22.5°,EAD∴∠=∠DAG+EAG∠=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,BF∴=FD=DP=PB,DPB∠=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,EAD∴∠=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.22、(1)y=x2+2x3﹣;(2);(3)详见解析.【解析】试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;(2)过点E作EFy∥轴,交AD与点F,过点C作CHEF⊥,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=EFA△的面积-EFC△的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.试题解析:(1)A(1∴,0),抛物线的对称轴为直线x=-1,B(∴-3,0),设抛物线的表达式为y=a(x+3)(x-1),将点D(-4,5)代入,得5a=5,解得a=1,∴抛物线的表达式为y=x2+2x-3;(2)过点E作EFy∥轴,交AD与点F,交x轴于点G,过点C作CHEF⊥,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1).EF∴=-m+1-m2-2m+3=-m2-3m+4.SACE∴△=SEFA△-SEFC△=EF·AG-EF·HC=EF·OA=-(m+)2+.ACE∴△的面积的最大值为;(3)当AD为平行四边形的对角线时:设点M的坐标为(-1,a),点N的坐标为(x,y).∴平行四边形的对角线互相平分,∴=,=,解得x=-2,y=5-a,将点N的坐标代入抛物线的表达式,得5-a=-3,解得a=8,∴点M的坐标为(-1,8),当AD为平行四边形的边时:设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,M(∴-1,16),将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,M(∴-1,26),综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.23、(1)∠P=50°;(2)∠P=45°.【解析】(1)连接OB,根据切线长定理得到PA=PB,∠PAO=PBO=90°∠,根据三角形内角和定理计算即可;(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到ABPA⊥,根据等腰直角三角形的性质解答.【详解】解:(1)如图①,连接OB.PA∵、PB与⊙O相切于A、B点,PA∴=PB,PAO∴∠=∠PBO=90°PAB∴∠=∠PBA,BAC∵∠=25°,PBA∴∠=∠PAB=90°一∠BAC=65°P∴∠=180°-PAB∠-∠PBA=50°;(2)如图②,连接AB、AD,ACB∵∠=90°,AB∴是的直径,∠ADB=90·PD∵=DB,PA∴=AB.PA∵与⊙O相切于A点ABPA∴⊥,P∴∠=∠ABP=45°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.24、(1)见解析;(2)PQmin=7,PQmax=13;(3)Smin=,Smax=18.【解析】(1)根据全等三角形判定定理求解即可.(2)以E为圆心,以5为半径画圆,①当E、P、Q三点共线时最PQ最小,②当P点在位置时PQ最大,分类讨论即可求解.(3)以E为圆心,以2为半径画圆,分类讨论出P点在位置时,四边形PADC面积的最值即可.【详解】(1)当P为AD中点时,,BCP△为等腰三角形.(2)以E为圆心,以5为半径画圆①当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7.②当P点在位置时PQ最大,PQ的最大值是(3)以E为圆心,以2为半径画圆.当点p为位置时,四边形PADC面积最大.当点p为位置时,四边形PADC最小=四边形+三角形=.【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.",)