Login
升级VIP 登录 注册
当前位置: 首页 > PPT模板 > 其他PPT > 基本粒子的相互作用,基本粒子的相互作用有些什么作用力?

基本粒子的相互作用,基本粒子的相互作用有些什么作用力?

收藏

基本粒子的相互作用

基本粒子的相互作用

基本粒子的相互作用

基本粒子的相互作用

基本粒子的相互作用

基本粒子与相互作用力基本粒子与相互作用力LOGO主要内容基本粒子·基本粒子简介·粒子的主要特征·粒子的主要结构·基本粒子理论·基本粒子物理学相互作用力·万有引力·电磁力·弱相互作用力·强相互作用力单击此处编辑母版副标题样式基本粒子英语名称:elementaryparticle基本粒子指人们认知的构成物质的最小最基本的单位。但在夸克理论提出后,人们认识到基本粒子也有复杂的结构,故现在一般不提“基本粒子”这一说法。根据作用力的不同,粒子分为强子、轻子和传播子三大类基本粒子简介•强子就是是所有参与强力作用的粒子的总称。它们由夸克组成,已发现的夸克有六种,它们是:顶夸克、上夸克、下夸克、奇异夸克、粲夸克和底夸克。其中理论预言顶夸克的存在,2007年1月30日发现于美国费米实验室。现有粒子中绝大部分是强子,质子、中子、π介子等都属于强子。(另外还发现反物质,有著名的反夸克,现已被发现且正在研究其利用方法,由此我们推测,甚至可能存在反地球,反宇宙)基本粒子简介----强子传播子也属于基本粒子。传递强作用的胶子共有8种,1979年在三喷注现象中被间接发现,它们可以组成胶子球,由于色禁闭现象,至今无法直接观测到。光子传递电磁相互作用,而传递弱作用的W+,W-和Z0,胶子则传递强相互作用。重矢量玻色子是1983年发现的,非常重,是质子的80一90倍。基本粒子简介----传播子轻子就是只参与弱力、电磁力和引力作用,而不参与强相互作用的粒子的总称。轻子共有六种,包括电子、电子中微子、μ子、μ子中微子、τ子、τ子中微子。电子、μ子和τ子是带电的,所有的中微子都不带电,且所有的中微子都存在反粒子;τ子是1975年发现的重要粒子,不参与强作用,属于轻子,但是它的质量很重,是电子的3600倍,质子的1.8倍,因此又叫重轻子。基本粒子简介----轻子返回LOGO由NordriDesign™提供www.nordridesign.com粒子的主要特征基本粒子要比原子、分子小得多,现有最高倍的电子显微镜也不能观察到。质子、中子的大小,只有原子的十万分之一。而轻子和夸克的尺寸更小,还不到质子、中子的万分之一。粒子的质量粒子的质量是粒子的另外一个主要特征量。按照粒子物理的规范理论,所有规范粒子的质量为零,而规范不变性以某种方式被破坏了,使夸克、带电轻子、中间玻色子获得质量。现有的粒子质量范围很大。光子、胶子是无质量的,电子质量很小,π介子质量为电子质量的280倍;质子、中子都很重,接近电子质量的2000倍,已知最重的粒子是顶夸克。己发现的六种夸克,从下夸克到顶夸克,质量从轻到重。中微子的质量非常小,目前己测得的电子中微子的质量为电子质量的七万分之一,已非常接近零。粒子的寿命粒子的寿命是粒子的第三个主要特征量。电子、质子、中微子是稳定的,称为"长寿命"粒子;而其他绝大多数的粒子是不稳定的,即可以衰变。一个自由的中子会衰变成一个质子、一个电子和一个中微子;一个π介子衰变成一个μ子和一个中微子。粒子的寿命以强度衰减到一半的时间来定义。质子是最稳定的粒子,实验已测得的质子寿命大于10的33次方年。粒子具有对称性粒子具有对称性,有一个粒子,必存在一个反粒子。1932年科学家发现了一个与电子质量相同但带一个正电荷的粒子,称为正电子;后来又发现了一个带负电、质量与质子完全相同的粒子,称为反质子;随后各种反夸克和反轻子也相继被发现。一对正、反粒子相碰可以湮灭,变成携带能量的光子,即粒子质量转变为能量;反之,两个高能粒子碰撞时有可能产生一对新的正、反粒子,即能量也可以转变成具有质量的粒子。自旋粒子还有另一种属性—自旋。自旋为半整数的粒子称为费米子,为整数的称为玻色子。守恒物质是不断运动和变化的,在变化中也有些东西不变,即守恒。粒子的产生和衰变过程就要遵循能量守恒定律。此外还有其他的守恒定律,例如轻子数和夸克数守恒,这是基于实验上观察不到单个轻子和夸克的产生和湮灭,必须是粒子、反粒子成对地产生和湮灭而总结出来的。双重属性:粒子性和波动性微观世界的粒子具有双重属性粒子性和波动性。描述粒子的粒子性和波动性的双重属性,以及粒子的产生和消灭过程的基本理论是量子场论。量子场论和规范理论十分成功地描述了粒子及其相互作用。返回基本粒子的结构1933年,狄拉克关于正电子存在的预言被证实,1955年塞格雷和钱伯林利用高能加速器发现了反质子。第二年又有人发现了反质子。1959年王淦昌等人发现了反西格玛负超子。这些都为反物质的存在提供了证据。莱因斯等利用大型反应堆,经过3年的努力,终于在1956年直接探测到铀裂变过程中所产生的反中微子。到1968年,人们才探测到了来自太阳的中微子。基本粒子的秘密基本粒子的秘密1947年鲍威尔利用自己发明的照相乳胶技术在宇宙线中找到了1934年汤川秀树提出的介子场理论中预言的介子。到50年代末,基本粒子的数目已达30种。这些粒子绝大多数是从宇宙射线中发现的。自1951年费米首次发现共振态粒子以来,至80年代已发现的共振态粒子达300多种。所有的基本粒子都是共振态,共振态的发现其实已经揭开了基本粒子的秘密,即所有的基本粒子都是共振态.共振态分二类,一类是不稳定的,如强子类;另一类是稳定的,如电子.中子等.它门不容易发生自发衰变.不存在绝对稳定的基本粒子,如电子在一定的条件下也会堙灭(与正电子相遇时)。产生基本粒子的外因是物质波的交汇,交汇处形成波包.内因是交汇处发生了共振,客观表现为共振态--即基本粒子的产生.基本粒子的秘密基本粒子的秘密基本粒子如此之多,难道它们真的都是最基本、不可分的吗?夸克模型1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,由三个夸克组成。基本粒子的秘密1990年弗里德曼、肯德尔和泰勒因在粒子物理学夸克模型发展中的先驱性工作而获物理奖。1965年,费曼、施温格、朝永振一郎因在量子电动力学重整化和计算方法的贡献,对基本粒子物理学产生深远影响而获物理奖。温伯格和萨拉姆等以夸克模型为基础,完成了描述电磁相互作用和弱相互作用的弱电统一理论。他们因此而获1979年物理奖。夸克型模目前统一场论的发展正向着把强相互作用统一起来的大统一理论和把引力统一进来的超统一理论前进。并且这种有关小宇宙的理论与大宇宙研究的结合,正在推进着宇宙学的进展。如今,人类为了把宇宙中的四大基本力统一起来,于是GabrieleVeneziano创造了弦论,弦论的一个基本观点就是,自然界的基本单元不是电子、光子、中微子和夸克之类的粒子。这些看起来像粒子的东西实际上都是很小很小的弦的闭合圈(称为闭合弦或闭弦),闭弦的不同振动和运动就产生出各种不同的基本粒子。它已经成为人类探寻宇宙奥秘的一个非常重要的理论返回基本粒子的秘密基本粒子理论一个发展中的理论于基本粒子的结构、相互作用和运动转化规律的理论。它的理论体系就是量子场论。按照量子场论的观点,每一类型的粒子都由相应的量子场描述,粒子之间的相互作用就是这些量子场之间的耦合,而这种相互作用是由规范场量子传递的。20世纪30年代以来,基本粒子理论在实验的基础上有了很大进展。•在粒子结构方面,人们已经通过对称性的研究深入到了一个层次,肯定了强子是由层子和反层子组成的,对真空特别是对真空自发破缺也有了新的认识。•在相互作用方面,发展了可描述电磁相互作用的量子电动力学,发展了能统一描述弱相互作用和电磁相互作用的弱电统一理论,可用于描述强相互作用的量子色动力学。它们无一例外都是量子规范场理论,并且都在很大程度上与实验一致,从而使人们对各种相互作用的规律性有了更深一层的了解。基本粒子理论在本质上是一个发展中的理论,它在许多方面还不能令人满意,其中有两个具有哲学意义的理论问题尚待澄清,即:层次结构问题(见物质结构层次)和相互作用统一问题(见相互作用的统一理论)。●在物质结构的原子层次上,可以把原子中的电子和原子核分割开来;●在原子核层次上,也可以把组成原子核的质子和中子从原子核中分割出来。可是进入到"基本粒子"层次后,情况有了变化。可是进入到"基本粒子"层次后,情况有了变化。这种变化在于强子虽然是由带"色"的层子和反层子组成的,但却不能把层子或反层子从强子中分割出来。这种现象被称为"色"禁闭。于是,在"基本粒子"层次,物质可分的概念增添了新的内容。可分并不等于可分割,强子以层子和反层子作为组分,但却不能从强子中分割出层子和反层子。"色"禁闭现象的原因至今还未能从理论上找到明确答案。80年代已知的层子、反层子已达36种,轻子、反轻子已达12种,再加上作为力的传递者的规范场粒子以及Higgs粒子,总数已很多,这就使人们去设想这些粒子的结构。物理学家们对此已经给出许多理论模型,但各模型之间差别很大,近期内还很难由实验验证和判断究竟哪个模型正确。在弱电统一理论获得成功之后,人们又探求强作用和弱作用、电磁作用三者之间的统一,提出了各种大统一模型理论。这种理论预言质子也会衰变,其寿命约为1032±2年。但还没有得到实验上的证实。在探索力的统一理论时不能不考虑引力。但引力和弱作用力、电磁作用力、强作用力有重要差别,因为它直接与空间、时间的测度有联系,它的传递者──引力子的自旋不同于其他三种作用力的传递者,它的耦合常数有量纲~(质量)-2,从而会出现无穷多种发散,不能重整化。各种大统一模型理论相继提出如果再考虑到A.爱因斯坦所提出的引力方程的非线性性质,就更增加了引力理论量子化、重整化的困难。初步的探讨认为,引力场也是一种规范场,这就意味着引力和其他三种基本力在逻辑上最终会统一起来。但从问题的深度上可以看到,有一些关键性的因素人们还没有掌握。各种大统一模型理论相继提出返回研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。又称高能物理学。其发展大致经历3个阶段。基本粒子物理学(1897~1937)可追溯到1897年发现第一个基本粒子电子。1932年J.查德威克在用a粒子轰击核的实验中发现了中子,随即人们认识到原子核是由质子和中子构成的,从而形成所有物质都是由基本的结构单元——质子、中子、电子构成的统一的世界图像。质子、中子、电子和A.爱因斯坦提出并被R.A.密立根和A.H.康普顿等人实验证实的光子、W.泡利假设存在的中微子(1956年最终被实验证实)以及P.A.M.狄拉克预言并被C.D.安德森1932年在宇宙线中观察到的正电子都被认为是基本粒子或亚原子粒子。第一阶段第一阶段在此阶段,理论上建立了量子力学,这是微观粒子运动普遍遵从的基本规律。在相对论量子力学的基础上,通过场的量子化初步建立量子场论,很好地解决了场的粒子性和描述粒子的产生、湮没等问题。随着原子核物理的发展,发现在相当于原子核大小的范围内除了引力相互作用电磁相互作用之外,还存在比电磁作用更强的强相互作用和介于电磁作用和引力作用之间的弱相互作用,前者是核子结合成核的核力,后者引起原子核的β衰变。对于核力的研究认识到核力是通过交换介子而产生的,并根据核力的电荷无关性建立起同位旋概念。第二阶段(1937~1964)先后陆续发现了众多的粒子。1937年从宇宙线中发现μ子,后来证实它不参与强作用,它和与之相伴的μ中微子同电子及与之相伴的电子中微子可归入一类,统称为轻子。1947年发现π±介子,1950年发现π0介子,1947年还发现奇异粒子。50年代粒子加速器和各种粒子探测器有了很大发展,从而开始了用加速器研究并大量发现基本粒子的新时期,各种粒子的反粒子被证实;发现了为数不少的寿命极短的共振态。基本粒子的大量发现,其中大部分是强子,人们怀疑这些基本粒子的基本性。人们尝试将强子进行分类,提出颇为成功的强子分类的“八重法”。这一阶段理论上最重要的进展是重正化理论的建立和相互作用中对称性的研究第二阶段关于描述电磁场量子化的量子电动力学,通过重正化方法消除了发散困难,对于电子和μ子反常磁矩以及兰姆移位的理论计算与实验结果精确符合。量子电动力学经受众多实验检验,成为描述电磁相互作用的成功的基本理论。对称性与守恒定律联系在一起,关于相互作用中对称性的研究,最为重要的结果是1956年李政道、杨振宁提出弱作用下宇称不守恒,1957年被吴健雄等人的实验及其他实验证实,这些实验同时也证实了在弱作用下电荷共轭宇称不守恒。这些研究推动弱作用理论的进展。第三阶段(1964~)以提出强子结构的夸克模型为标志。1964年M.盖耳曼和G.兹韦克在强子分类八重法的基础上分别提出强子由夸克构成,夸克共有上夸克u、下夸克d和奇异夸克s三种,它们的电荷、重子数为分数。夸克模型可以说明当时已发现的各种强子。夸克模型得到后来进行的高能电子、高能中微子对质子和中子的深度非弹性散射实验的支持,实验显示出质子和中子内部存在点状结构,这些点状结构可以认为是夸克存在的证据。1974年发现J/ψ粒子,其独特性质必须引入一种新的粲夸克c,1979年发现另外一种独特的新粒子Υ,必须引入第5种夸克,称为底夸克b。另一方面,1975年发现重轻子τ,并有迹象表明存在与τ相伴的τ中微子,于是轻子共有6种。第三阶段迄今的实验尚未发现轻子有内部结构。人们相信轻子是与夸克属于同一层次的粒子。轻子与夸克的对称性意味着存在第6种顶夸克t。1994年4月26日,美国费米国家实验室宣布已找到顶夸克存在的证据。这一阶段理论上最重要的进展是建立电弱统一理论和强相互作用研究的进展。1961年S.L.格拉肖提出,其基础是杨振宁和R.L.密耳斯于1954年提出的非阿贝耳规范理论。按照这一模型,光子是传递电磁作用的粒子,传递弱作用的粒子是W±和Z0粒子,但是W±、Z0是否具有静质量,理论上如何重正化问题没有解决。1967~1968年在对称性自发破缺的基础上,S.温伯格、A.萨拉姆发展了格拉肖的电弱统一模型,建立了电弱统一的完善理论,阐明了规范场粒子W±、Z0是可以有静质量的,理论预言它们的质量在80~100吉电子伏特(GeV),此外还预言存在弱中性流。1973年观察到弱中性流,1983年发现W±、Z0粒子,其质量(mW≈80GeV,mZ≈90GeV)及特性同理论上期待的完全相符。万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量乘积成正比,跟它们的距离的二次方成反比。如果用m1、m2表示两个物体的质量,r表示它们间的距离,则物体间相互吸引力为F=(Gm1m2)/r2,G称为万有引力常数。万有引力定律是牛顿在1687年出版的《自然哲学的数学原理》一书中首先提出的。牛顿利用万有引力定律不仅说明了行星运动规律,而且还指出木星、土星的卫星围绕行星也有同样的运动规律。他认为月球除了受到地球的引力外,还受到太阳的引力,从而解释了月球运动中早已发现的二均差、出差等。另外,他还解释了彗星的运动轨道和地球上的潮汐现象。根据万有引力定律成功地预言并发现了海王星。万有引力定律出现后,才正式把研究天体的运动建立在力学理论的基础上,从而创立了天体力学。简单的说,质量越大的东西产生的引力越大,地球的质量产生的引力足够把地球上的东西全部抓牢。万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期)如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得行星受到的力的作用大小为:mrω2=mr(4π2)/T2另外,由开普勒第三定律可得r3/T2=常数k'那么沿太阳方向的力为:mr(4π2)/T2=mk'(4π2)/r2由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,(太阳的质量M)(k'')(4π2)/r2是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量M,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为:万有引力=GmM/r2图1卡文迪许实验示意图Figure1SchematicdiagramofCavendishExperiment当时牛顿提出了万有引力理论,却未能得出万有引力的公式,因为公式中的“G”实在太小了,因此他提出:F∝mM/r2。直到1798年英国物理学家卡文迪许利用著名的卡文迪许扭秤(即卡文迪许实验)较精确地测出了引力恒量的数值。计算公式两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10-11次方单位N·m2/kg2。为英国物理学家、化学家亨利·卡文迪许通过扭秤实验测得。两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。重力,就是由于地面附近的物体受到地球的万有引力而产生的。但是需要注意的是,因为地球在自转,除了在南极北极端点,在地球上任意一点的物体,其重力并不等于万有引力。此时可看作绕地球的向心力和重力合成万有引力。由于绕地球自转的向心力远小于重力,故一般就认为重力就略等于万有引力了,其实重力是略小于万有引力的,只有在南北极物体绕地球自转的向心力为零时,重力才等于万有引力。万有引力的伟大意义17世纪早期,人们已经能够区分很多力,比如摩擦力、重力、空气阻力、电力和人力等。牛顿首次将这些看似不同的力准确地归结到万有引力概念里:苹果落地,人有体重,月亮围绕地球转,所有这些现象都是由相同原因引起的。牛顿的万有引力定律简单易懂,涵盖面广。牛顿的万有引力概念是所有科学中最实用的概念之一。牛顿认为万有引力是所有物质的牛顿的万有引力概念是所有科学中最实用的概念之一。牛顿认为万有引力是所有物质的基本特征,这成为大部分物理科学的理论基石。万有引力的简单涵义•牛顿并不是发现了重力,他是发现重力是「万有」的。每个物体都会吸引其他物体,而这股引力的大小只跟物体的质量与物体间的距离有关。牛顿的万有引力定律说明,每一个物体都吸引着其他每一个物体,而两个物体间的引力大小,正比于这它们的质量,会随著两物体中心连线距离的平方而递减。牛顿为了证明只有球形体可把「球的总质量集中到球的质心点」来代表整个球的万有引力作用的总效果而发展了微积分。然而不管距离地球多远,地球的重力永远不会变成零,即使你被带到宇宙的边缘,地球的重力还是会作用到你身上,虽然地球重力的作用可能会被你附近质量巨大的物体所掩盖,但它还是存在。不管是多小还是多远,每一个物体都会受到引力作用,而且遍布整个太空,正如我们所说的「万有」。万有引力的解释万有引力的解释量子力学的解释我们知道,由光子是物质的基本粒子来看,物质的构成本身没有意义,如果物质不能够与环境中的其它光子信息相互作用,它就不能将自己的能量、存在形式、表达给自然界,自己就是以纯暗物质的形式存在,尽管自己的寿命表现为无限长久,但是对环境、对自己没有意义,只有它不断与环境的其它光子信息相互作用光子能量,才能将自己的能量、质量表现出来,自己的光子信息才能变化,自己才能由生长到死亡,才能有自己存在的意义;这就是说任何物质,只要它存在,它就会不断地与环境中的其它光子信息相互作用,这样,物质的存在,各种作用力的存在,事实上,是通过自己周围的光子信息场完成的。存在物质A,是物质A不断与环境作用光子信息能量,而表现自己的质量,当物质B存在的时候,由于B也要不断与环境的光子信息相互作用,这B就不同程度地影响了A周围的光子信息内容,从宏观的角度来看,是B挡住了来自A周围的光子信息,改变了A周围的光子信息场,从大的方面来看,是来自于左方的光子信息能量要多一些,来自于A的右方光子信息能量要少一些,宏观表现为B对A有一个作用力,这个作用力,是所有物质共有的,称为万有引力。也可以说成是,由于B的存在,导致了A周围的光子信息力场的形状发生了变化,这个力场的形状发生了变化,本来没有B的时候,物体A是一种平衡状态,有了B以后,光子信息的力场发生了变化,物体A的作用力,由于平衡变成了不平衡,人们自然会说,这是物体B存在的结果,是物体B对A的作用力。万有引力、电磁力、强相互作用力、弱相互作用力这四种作用力是统一的,它们都是由一种基本粒子的振动波来传递的,只是波的形式不同。任一质点(物质)都使与其碰撞的这种基本粒子径向振动的动量减少(波长拉长)并向外传递形成(万有)引力场;电子(电荷)使与其碰撞的这种基本粒子径向振动的横向上增加动量并向外传递形成静电场;运动的电荷(电流)使与其碰撞的这种基本粒子在原径向振动状态上增加了两个垂直其径向方向的动量并向外传递形成电磁场;强相互作用力、弱相互作用力是这种基本粒子径向振动对粒子产生的压力与电磁力、引力的共同作用。四种基本相互作用力的完全统一理论的解释:任意两质点(由基本粒子构成的物质)在各方向上都受到力基子的碰撞,碰撞的频率非常高,因质点的质量远远大于力基子的质量,其中有一些力基子在非常短的时间内会被挤帖在质点上(可以又被挤掉重新受到力基子的碰撞获得动量),于是质点周围的力基子波的波长被拉长,碰撞频率降低,压力降低。在质点外侧两质点距离以外的地方,力基子波的频率大于内侧频率,所以内侧压力小于外侧压力,表现两质点相互吸引,即万有引力。引力的大小与两质点的质量之积成正比与其之间距离的平方成反比(力基子波在两质点之间连线上碰撞传递时,每一次传递都受到系统能量的恢复使波长逐渐增加,可通过积分计算出与其之间距离的平方成反比)力基子之间不吸引,原因为它是最小的、质量相等的基本粒子,只能通过相互碰撞运动传递能量(力),不吸收能量,除非把它压成一个更大的结构粒子。质量大的物体“吸收”力基子波的能量大,它周围的压力比质量小的物体周围压力更低,F=ma相对论的解释其实引力是不存在的。或者说引力只是这种现象的一种解释而已。它不同于其他力。“引力”其实是时空扭曲的表现,举一个二维的例子:一张绷直的橡皮筋网1.放上两个质量不一,体积相同的球,网扭曲了2.在1的基础上,让一个球在橡皮筋网上作匀速直线运动,直线与(同一个)球的位置距离越近轨迹弯区越大3.在2的基础上,让一个球在橡与两个球的距离相同,经过质量大的球,轨迹弯区大2跟3说明的现象与引力相似,而且也有质量越大、距离越小,引力越大物体由于惯性沿直线运动,但在扭曲的空间运动,表现出来就是受到引力影响事实上,引力扭曲的是四维时空还有一个例子:光经过大质量天体时会扭曲,但引力不能作用于光,所以解释就是光沿直线传播,在扭曲的时空中运动,就会扭曲。但光还是沿直线传播.事实上,万有引力并不是一种真实的力,而是时空弯曲的表现.。返回电磁力定义:电荷、电流在电磁场中所受力的总称。也有称载流导体在磁场中受的力为电磁力,而称静止电荷在静电场中受的力为静电力。电工中所关注的电介质在电磁场中受到的有质动力也是电磁力。电机中起主要作用的力通常是磁场作用在铁质电枢上的有质动力,而不是载流导体上受的力。电枢上受的有质动力可以运用虚位移方法由外源供能、场能、机械功的平衡式导出。代表:电力磁力电磁力是自然界中的4种基本力之一库仑定律和安培实验表明:电荷在电场中受库仑定律和安培实验表明:电荷在电场中受到库仑力到库仑力;;电流在磁场中受到安培力。电荷量为电流在磁场中受到安培力。电荷量为qq的点电荷在电场强度为的点电荷在电场强度为EE的电场中受到的作用的电场中受到的作用力即库仑力是力即库仑力是FeFe==qEqE证明应用在现今工程技术能够实现的条件下,可以产生强磁场和大电流,从而获得强大的磁力,但却难以获得大量的静电荷和强电场以产生强大的静电力。几乎所有的电动机都是靠磁力驱动的。而一些静电仪器、电子管器件、静电除尘装置等,则是以静电力来实现其功能的。返回LOGO弱相互作用力弱相互作用力也叫弱作用力。是自然界中四种作用力之一。Page56弱力是如何表现出来的?弱力属于微观力。在微观粒子世界中,粒子之间的相互作用是通过碰撞而实现的。由于作用强度的不同弱相互作用表现为弱、电、强作用力。对于弱相互作用力来说,表现为中子的β衰变。即:中子衰变成质子、电子与电子中微子。57在费曼图中表现为:中子与电子中微子发生碰撞,在碰撞过程中发生了力的作用,这种力就是弱相互作用力。碰撞后的中子改变方向,其固有能量与动量都发生改变,变成了质子(准确的说是:碰撞后中子改变运动方向,与观测时空成角,被观测成了质子)。同样,电子中微子也改变方向,固有能量与动量也发生改变,变成了电子(准确的来说是:碰撞后电子中微子改变运动方向,与观测时空成角,被观测成了电子)。♫粒子之间是如何通过弱力作用的?参与碰撞的粒子称为费米子,其自旋为半整数。由于两粒子间的碰撞是间隔一定距离的,这种碰撞并不是超距作用,而是要通过媒介粒子来传递,这个起传递作用的粒子就象是一个“媒婆”,被称为玻色子,其自旋为整数。传递力的作用的粒子以虚态存在。对于弱相互作用来说该粒子为W、Z光子(光子的运动速度为光速,由于其运动速度的下降,被观测成了低速运动的W、Z粒子)。弱电是如何统一的?AddyourtitleinhereAddyourtitleinhereAddyourtitleinhere在量子力学中,粒子从初态到末态的跃迁,涉及到粒子的湮灭与产生。可以近似的用费米公式和量子场论的相应公式进行计算。计算中,4个费米子(中子、质子、电子、电子中微子)通过一个中间玻色子联系。通过跃迁前后费米子场与玻色子场的关系,将弱作用力的耦合常数用电磁精细结构常数(也就是电磁力的作用强度1/137)进行替代,引入距阵元与费米相互作用常数的关系。计算出W、Z光子的理论质量。这个计算结果与实验相符。从而反过来证实了弱电的统一性,即:弱相互作用与电磁相互作用是一种力―――这就是1979年诺贝尔物理学奖。返回强相互作用力LOGO由NordriDesign™提供www.nordridesign.comLOGOPage61强相互作用简介最早认识到的质子、中子间的核力属于强相互作用,是质子、中子结合成原子核的作用力,后来进一步认识到强子是由夸克组成的,强作用是夸克之间的相互作用力。强作用最强,也是一种短程力。其理论是量子色动力学,强作用是一种色相互作用,具有色荷的夸克所具有的相互作用,色荷通过交换8种胶子而相互作用,在能量不是非常高的情况下,强相互作用的媒介粒子是介子。强作用具有最强的对称性,遵从的守恒定律最多。强作用引起的粒子衰变称为强衰变,强衰变粒子的平均寿命最短,为10-20~10-24s,强衰变粒子称为不稳定粒子或共振态。强相互作用力乃是让强子们结合在一块的作用力,人们认为其作用机制乃是核子间相互交换介子而产生的。而其实,强子们之间的相互作用实际上乃是夸克团体与夸克团体之间的相互作用,而夸克团体之间的相互作用则必然乃夸克与夸克之间相互作用的剩余。而夸克之间的相互作用我们已知它是未饱和游空子重合体之间相互作用的延伸,这才是真正的强相互作用之作用机制。强相互作用力实质大约地说,当夸克们结合成为强子时,其结构已经较为严密完整,可是,如果强子之间发生了强烈的撞击作用,那么各强子原来的结构则定会遭到破坏,因此,各强子中的大小夸克们则自然会重新产生相互的作用而结合在一块;这,正就是强相互作用的现象。而说到底,强相互作用的实质乃是由于未饱和游空子重合体之中心体因其综合循环体的未饱和而通过静空子中间体渗透出中心极性而与别的未饱和游空子重合体之外层循环体产生相互吸引,并且自身的循环体同理也受到对方中心体吸引,因而它们之间则产生了强烈的相互作用从而形成了各种层次的联合构成体,而强相互作用则乃是其中一个层次上的联合相互作用而已。谢谢


  • 编号:1701027016
  • 分类:其他PPT
  • 软件: wps,office Excel
  • 大小:65页
  • 格式:xlsx
  • 风格:其他
  • PPT页数:18009088 KB
  • 标签:

广告位推荐

相关其他PPT更多>