Login
升级VIP 登录 注册 安全退出
当前位置: 首页 > PPT模板 > 教师培训 > 人教版九年级上册数学第21章-实际问题与一元二次方程-第1课时

人教版九年级上册数学第21章-实际问题与一元二次方程-第1课时

收藏

人教版九年级上册数学第21章-实际问题与一元二次方程-第1课时

人教版九年级上册数学第21章-实际问题与一元二次方程-第1课时

人教版九年级上册数学第21章-实际问题与一元二次方程-第1课时

人教版九年级上册数学第21章-实际问题与一元二次方程-第1课时

人教版九年级上册数学第21章-实际问题与一元二次方程-第1课时

人教版数学九年级上册时间:21.3实际问题与一元二次方程11/13/2023第1课时素养目标1.能根据实际问题中的数量关系,正确列出一元二次方程并求解.2.通过一元二次方程解决传播问题、增长率问题。复习旧知列方程解应用题的一般步骤哪几步?①审题(找等量关系)②设未知数③列方程,④解方程,⑤检验,导入新课谚语有言:“一传十、十传百、百传千千万”(1)若A同学患流感每轮能传染6人,受感染的其他同学也每轮以相同的速度传播。则第一轮传染过后共有人患流感,第二轮过后共有人患流感。知识点1传播问题传染病,一传十,十传百……【想一想】有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?探究新知知识点1传播问题第2轮•••小明12x第1轮第1轮传染后人数1+x小明第2轮传染后人数探究新知【分析】设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:1+x+x(1+x)=(1+x)2①审题,找等量关系解:设每轮传染中平均一个人传染了x个人.列方程x+1+x(x+1)=121.提公因式(x+1)(x+1)=121(x+1)2=121x+1=±11x1=10,x2=-12(舍去)答:平均一个人传染了________个人.10探究新知②设未知数③列方程,④解方程,⑤检验,⑥作答.【想一想】如果按照这样的传染速度,3轮传染后有多少人患流感?n轮后呢?第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数(1+x)1(1+x)2以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).(1+x)3探究新知运用一元二次方程模型解决实际问题的步骤有哪些?【归纳】探究新知①审题(找等量关系)②设未知数③列方程,④解方程,⑤检验,【例1】某新型病毒传染性很强,曾有2人同时患上该病毒,若在一天内一人平均能传染x人,经过两天传染后共有128人患上该病毒,则x的值为______________.7课堂导练学导练P16根据题意得:2(1+x)2=128思路点拨:根据题意列出关于x的一元二次方程,求出x并取其正值即可.解得:x1=7,x2=-9(舍去)先弄清楚起始病源数量、单个病源平均每轮传染的数量,再根据传染的轮数和传染结果数列方程,知识点1传播问题【学导练P16】探究新知axnbb=a(1+x)n等量关系电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?解:设每轮感染中平均一台电脑会感染x台电脑.答:每轮感染中平均一台电脑会感染19台电脑.解得=19或=-21(舍去).依题意得6(1+x)²=2400巩固练习新课导入课时导入第三年种的水稻平均每公顷的产量为.第一年平均每公顷产8000kg第二年种的水稻平均每公顷的产量为;知识点2增长率问题新课讲解知识点2增长率问题1两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的成本是3000元,生产1t乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?下降率是什么意思?它与原成本、终成本之间有何数量关系?例下降率是下降额与原成本的比值;下降率=×100%原成本-终成本原成本新课讲解知识点①如果甲种药品成本平均每年的下降率为x,则下降一次后的成本变为,再次下降后的成本变为.(用代数式表示)②设甲种药品成本平均每年的下降率为x,由等量关系可得方程,解这个方程,得到方程的两根,根据问题的实际意义,应选择哪个根呢?为什么?5000(1-x)5000(1-x)2终成本=原成本×(1-下降率)25000(1-x)2=3000新课讲解应选择x1=0.225.因为根据问题的实际意义,成本的年平均下降率应是小于1的正数.222150001300031515150.225,1.7()()75xxxxx解:新课讲解③设乙种药品成本平均每年的下降率为y,则由等量关系可得方程.解方程,得y1≈0.225,y2≈1.775.根据问题的实际意义,乙种药品成本的年平均下降率约为22.5%.综上所述,甲乙两种药品成本的年平均下降率相同,都是22.5%.终成本=原成本×(1-下降率)26000(1-y)2=3600新课讲解思考:经过计算,你能得出什么结论?成本下降额大的药品,它的成本下降率一定也大吗?应怎样全面地比较几个对象的变化状况?答:甲乙两种药的平均下降率相同;成本下降额较大的药品,它的成本下降率不一定较大.不但要考虑它们的平均下降额,而且要考虑它们的平均下降率.新课讲解练一练某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1-x)2=315C.560(1-2x)2=315D.560(1-x2)=315B1新课讲解某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均每月的增长率为x,则依题意列方程为()A.25(1+x)2=82.75B.25+50x=82.75C.25+25(1+x)2=82.75D.25[1+(1+x)+(1+x)2]=82.75D2巩固练习练习学导练课堂小结1、本节课我们学习了哪些知识?2、列方程解应用题的一般步骤?3、在列方程解实际问题时,要注意哪些问题?作业内容分层作业本P8课后作业


  • 编号:1701028423
  • 分类:教师培训
  • 软件: wps,office Excel
  • 大小:23页
  • 格式:xlsx
  • 风格:其他
  • PPT页数:3966339 KB
  • 标签:

广告位推荐

相关教师培训更多>